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Achieving baseline states in sparsely connected spiking-neural networks

stochastic and dynamic approaches in mathematical neuroscience

by Alexander Antrobus

Networks of simple spiking neurons provide abstract models for studying the dynamics of biolog-

ical neural tissue. At the expense of cellular-level complexity, they are a frame-work in which we

can gain a clearer understanding of network-level dynamics. Substantial insight can be gained

analytically, using methods from stochastic calculus and dynamical systems theory. This can

be complemented by data generated from computational simulations of these models, most of

which benefit easily from parallelisation. One cubic millimetre of mammalian cortical tissue can

contain between fifty and one-hundred thousand neurons and display considerable homogene-

ity. Mammalian cortical tissue (or “grey matter”) also displays several distinct firing patterns

which are widely and regularly observed in several species. One such state is the “input-free”

state of low-rate, stochastic firing. A key objective over the past two decades of modelling

spiking-neuron networks has been to replicate this background activity state using “biologically

plausible” parameters. Several models have produced dynamically and statistically reasonable

activity (to varying degrees) but almost all of these have relied on some driving component

in the network, such as endogenous cells (i.e. cells which spontaneously fire) or wide-spread,

randomised external input (put down to background noise from other brain regions). Perhaps

it would be preferable to have a model where the system itself is capable of maintaining such

a background state? This a functionally important question as it may help us understand how

neural activity is generated internally and how memory works. There has also been some con-

tention as to whether “driven” models produce statistically realistic results. Recent numerical

results show that there are connectivity regimes in which Self-Sustained, Asynchronous, Irreg-

ular (SSAI) firing activity can be achieved. In this thesis, I discuss the history and analysis of

the key spiking-network models proposed in the progression toward addressing this problem. I

also discuss the underlying constructions and mathematical theory from measure theory and

the theory of Markov processes which are used in the analysis of these models. I then present

a small adjustment to a well known model and provide some original work in analysing the
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resultant dynamics. I compare this analysis to data generated by simulations. I also discuss

how this analysis can be improved and what the broader future is for this line of research.
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Chapter 1

Introduction

It has long been known that, perhaps in its crudest form, the brain can be thought of as

a “mass of excitable units”, each receiving and giving input to other units [Beurle, 1956].

This line of thought has developed fruitfully over the past five decades into an approach to

theoretical neuroscience based firmly in dynamical systems theory. From single neuron models,

theoreticians can conceptualise and, to within the bounds of complexity, simulate clusters of

neurons interacting. It is widely accepted that neural function, or information processing, occurs

predominantly at this “micro-network” level [Mountcastle, 1957] [Arbib, 2003, p. 31]. To try

and understand the basis of information processing in neural tissue we need to understand the

dynamics of brain-like networks. The ease of doing so mathematically obviously depends on the

complexity and degree of homogeneity of our chosen network model, as well as on our choice

of parameterisation. As is always the case in mathematical modelling of a “real” system, we

have a trade-off between degree of complexity (how many variables and parameters of the real

system are present in the model) and ease of analysis.

We can distinguish between two (of many) subjects in neurodynamics along the lines of single

cell models and network models. The former began in earnest with the research of Alan Hodgkin

and Andrew Huxley. Their Hodkgkin-Huxley (H-H) model constitutes a framework which can

potentially “fit” any biological neuron we currently know of, by adding relevant ion channels

and relevant models for synaptic exchange1. In electro-physiological dynamics of nerve cells,

the principle quantity of interest is V - the potential difference across the cell membrane. This

quantity depends on the relative concentrations of various charged ions (principally potassium

1Of course, the literature describes various mechanisms beyond the traditional H-H framework but many of
these are either rarely observed or readily implemented as extensions of the H-H model.

1



Chapter 1. Introduction 2

and sodium) on either side of the cellular membrane. Hodgkin and Huxley’s work consisted of

analysing the system of ordinary differential equations which described how the local membrane

potential coupled to the local flow of potassium and sodium ions through the membrane (see

figure 1.1). This flow is controlled by ion-channels embedded in the membrane. These ion

channels can change shape, opening and closing, to control the flow of ions. Their shape has a

non-linear dependence on the membrane potential. Hodgkin and Huxley used numerical phase-

plane analysis to show that, in their model, there exists a “critical value” for V at which the ion-

channels open/close rapidly, causing a sudden fast rise (spike) in V (which propagates down the

axon) before it returns to the stable fixed-point value. Spikes are principally observed on axons

and initiate at the point where the axon meets the cell body, or soma - called the axon hillock

[Arbib, 2003]. For an extremely engaging introduction to these results in a mathematically

rigorous setting, see [Scott, 2002].

The H-H model is, in its simplest form and without considering dendritic or axonal geometry,

a system of considerable complexity. Numerical modelling of small networks of H-H based

neurons is now easily facilitated by software like NEURON but any form of analysis to derive

global dynamics of these networks and larger network models is not possible. A wide variety

of simpler neuron models are thus implemented, some derived from the H-H system, others

built phenomenologically. The concept of the “leaky integrate-&-fire” (LIF) neuron is built

phenomenologically from the H-H results: treating the neuron as a point particle, we do not

consider any geometry to the cell. A spike is a “Yes/No” occurrence2. More detail is explained

in section 1.2 and section 2.1.

Figure 1.1: Nerve Axon. Spikes (or action potentials) propagate principally down the axons
of nerves to synapses, where they cause the release of synaptic vesicles which, in tern, cause
an influx of charged ions in/out of the post-synaptic neuron, effecting its membrane potential.
This diagram shows a schematic representation of the axon, with V labelling the membrane
potential. jion denotes the flow of ions which changes the membrane potential locally. i denotes
the resultant longitudinal flow of currents due to the fact that V will vary from point to point

along the length of the axon (x-axis). Taken from [Scott, 2002].

2We do know, though, that this is not in fact the case. Thresholds are dynamic. For an interesting discussion,
see [Mitry et al., 2013]

http://www.neuron.yale.edu/neuron/
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The term “spiking-network model” refers to networks in which distinct neurons emit spikes, as

opposed to networks where only rates of network populations are considered (like Wilson-Cowan

models [Wilson and Cowan, 1973]), or networks where “neurons” are discrete computational

devices - like perceptrons [Public, 2014]. Of course, as mentioned above, the model used to

exhibit spiking behaviour can differ considerably in structure and complexity, from H-H-like

models to L-I-&-F models.

Such spiking-networks are often seen computationally as attractor neural networks. This means

that a computation is seen to be the process of the network settling into a dynamic state

(output of computation) - an attractor of its dynamics - given a certain initial state (input to

computation). In particular, this mechanism has been welcomed as a strong candidate for very

short-term, or working memory [Amit and Brunel, 1997,Barbieri and Brunel, 2008].

Transitions between such states can occur due to external inputs. Changes in the distribution

and nature of the attractors (bifurcations) comes about through changes in parameterisation -

usually connectivity or external input. An interesting field of research is how the large time-

scale dynamics of parameter evolution (learning) relates to the small time-scale dynamics of the

network, since both depend on the same input! Before this can be considered, though, there is

the simple milestone of whether these models are capable of maintaining the dynamic regimes

observed in living tissue. In particular, mammalian cortical tissue is almost never silent. Even

in unconscious specimens, and across several species, an observed section of cortical tissue can

be expected to display spiking. In particular, a dynamic state of random, low-rate firing is

commonly observed in tissue which is not receiving any task or sensory specific input [Latham

et al., 2000]. This background state can be best understood as follows: if an arbitrary neuron

in such a section of cortex was observed, we would find that its spiking activity well described

by a Poisson process, with mean rate λ ∼ 1 − 5 Hz, interspersed with short periods in which

the neuron may “burst” - firing repeatedly and rapidly.

A standard requirement for any spiking network which claims to simulate cortical dynamics is

to reproduce this basal activity state. Several have endeavoured to do so and claimed some

success [Latham et al., 2000, Brunel, 2000], though, to my knowledge, all require some form of

driving, or external input. This is usually in the form of excitatory cells which fire spontaneously

(endogenous cells) or in the form of input coming into some/all cells from “excitatory neurons

outside the network” [Brunel, 2000]. Mathematically, these amount to essentially the same

thing: an imperfection parameter (as will be shown later). Perhaps it would be preferable
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if the network could maintain dynamic activity itself while still within reasonable parameter

regimes? There are several reasons for this; the first is that maintaining (localised) neural

activity, without external stimulus, is a promising candidate for how short-term memory works.

Secondly, it may help us to understand how brains remain active during states when external

stimuli are seemingly absent (unconsciousness, sleep). Thirdly, we all know intuitively that a

significant amount of our thoughts are seemingly generated from “within”, suggesting neural

systems must have significant means of generating and maintaining activity without external

inputs. The recently released simulation results in [Gewaltig, 2013] suggest that this is possible.

Mathematical neuroscience applies various disciplines of mathematics in investigating questions

in neuroscience. When considering models of spiking neurons, techniques used come from non-

linear dynamics theory, stochastic calculus and the study of stochastic processes. It is assumed

the reader has a good grasp of basic dynamical systems theory: theory of bifurcations and sta-

bility analysis. If not, all relevant information can be found in [Strogatz, 1994]. An extremely

brief but fairly thorough introduction to stochastic integrals (and the underlying measure the-

ory) appears in appendix A as the author found it beneficial to teach himself this during the

preparation of this work. The other appendices contain various constructions and derivations

used in the analysis.

The rest of this thesis is laid out as follows. The rest of this Introduction discusses early at-

tempts to model cortical activity, mentioning key developments in the literature and ultimately

introducing the L-I-&-F based “Brunel Model” of sparse, weakly connected networks of exci-

tatory and inhibitory neurons. In the Results section, some of the published analysis of this

model are presented, particularly where it pertains to sustainability and spiking statistics of

low-rate activity. Thereafter I discuss some original, preliminary results from analysing and

extended form of the Brunel model which was inspired by the numerical results in [Gewaltig,

2013]. In chapter 3 I compare some predictions from this new analysis to results from multiple

simulations. In chapter 4 I review the main points to be taken from this text and discuss how

it relates to current research in theoretical and computational neuroscience.

1.1 Neural tissue as a mass of threshold units

Richard Beurle, followed by Ross Ashby, Heinz Von Foerster and Crayton Walker [Ashby et al.,

1962], were some of the earliest authors to consider the dynamics of structures with “properties
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similar to those of neurons” [Beurle, 1956]. Beurle found that, in a homogeneous plane of

excitable cells with some proximity dependent connectivity distribution, any type of global,

stable activity was inherently unstable but that one could expect waves of activity to propagate

(possibly repeatedly) across the mass. Ashby et al. then proposed a model where they derived

a function for the probability of a unit emitting an output spike given the probability of its

afferent units emitting input spikes. This results in a binomial distribution in the mean firing

probability and, using this as an iterative map, they supplied a more rigorous proof that low or

intermediate rate firing activity is inherently unstable for this system of recurrently connected,

excitatory threshold units. They concluded that “the more richly organised regions of the brain

offer us something of a paradox.” Griffiths showed in 1963 that just such a paradox could be

overcome with the introduction of inhibitory units to the system [Griffith, 1963]. To be more

explicit, consider a homogeneous (near infinite) mass of identical “excitable” units. We choose

to observe one specific unit. This unit has Ce excitatory and Ci inhibitory incoming connections

(as do all other units) and it and may receive as many as ne (Ce ≥ ne ≥ 0) excitatory and ni

(Ci ≥ ni ≥ 0) inhibitory inputs via these connections during a step of discretised time (∆t). If

the number of excitatory inputs minus the number of inhibitory inputs is enough to push the

unit beyond the threshold, θ, then the unit will fire. The other units, which send input to this

unit, are all identical (save that some cause inhibitory and others excitatory input) and have

equal probability of spiking, say p. Let q = 1 − p, then q is the probability that an arbitrary

unit does not fire in a time step. The probability that our observed unit fires within a given

time step of discretised time, is then given by

Pr{neuron spikes} =
∑

ne−ni≥θ

(
Ce
ne

)(
Ci
ni

)
pne+niqCe+Ci−ne−ni . (1.1)

The summation is performed over all possible combinations of (ne, ni) which satisfy the condition

ne − ni ≥ θ. The observed neuron is the same as all other neurons though! Hence we expect

that Pr{neuron spikes} = p, by definition. We can be plot equation (1.1) as a function of p, or

rather a distribution for p and solve visually or numerically for the value p∗ such that

p∗ =
∑

ne−ni≥θ

(
Ce
ne

)(
Ci
ni

)
(p∗)ne+ni(q∗)Ce+Ci−ne−ni . (1.2)

This is interpreted as the expected fraction of the total population which fired in ∆t such that,

in the next ∆t, the same fraction fire again, et continuum. Griffiths showed that for a small

region of parameter space (not too many connections coming in to each unit and carefully
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balanced ratios of excitation and inhibition in the network), this system displays a stable fixed

point at p∗ = 1/2. Achieving this, though, requires parameter choices which are unreasonable

from a physiological point of view [Gewaltig, 2013]: namely very a small ratio of threshold

(θ) to excitatory input strength (J): θ/J < 10. In the above Griffiths model, the excitatory

input strength in dimensionless and normalised to 1 but, as is the case for the more biologically

plausible models introduced below, excitatory input to a neuron causes a change in its membrane

potential (measured in Volts) and could take an arbitrary value. To push the stable value below

0.5 (half the network firing at any given moment, which is not particularly reasonable), we

can increase Ce and Ci. The cost is that the probability distribution of p narrows, meaning

the network cannot tolerate large fluctuations from the stable state without moving beyond

the basin of stability. More importantly, if we consider parameters that mirror what little we

do know about cortical physiology, namely a large number (∼4-10 000) of connections coming

into each node [Braitenberg and Schütz, 1998] we are hard-pressed to find plausible (i.e small

p∗) stable states in this model. A more complex, biologically inspired model is that of Amit,

Tsodyks, Brunel and others which forms the body of the discussion in this thesis.

Other early theoreticians, like Richard Stein and Henry Tuckwell, looked at how individual

neurons process their inputs, or rather, how the statistics of their inputs effect their firing activity

[Stein, 1965, Stein, 1967], [Tuckwell, 1976]. The membrane potential of a an individual neuron

is treated as a random variable (see appendix B) which obeys a continuous Markov process,

or diffusion process and, assuming a simple threshold-fire condition, models were proposed to

calculate the efferent firing rates and variabilities, given the parameters of the afferent Wiener

process input. Descriptions and derivations of various components of this theory appear in this

thesis in appendix B, as they are now routinely used to analyse contemporary network models.

Two decades later, the question of dynamic activity in models of neural tissue received new

interest thanks to two key papers [Vreeswijk and Sompolinsky, 1996,Vreeswijk and Sompolinsky,

1998]. In the first Carl Van Vreeswijk and Heim Sompolinsky developed a model in which

the Poissonian distributions of individual neurons’ spike times depend on fluctuations in their

input from a sub-threshold mean. They showed that these spike-time distributions are a result

of the deterministic (but chaotic) dynamics of the network, not the presence of randomised

external input or driving. All of this occurs because there is a balance in the network: average

mean inhibition cancels average mean excitation but fluctuations from the mean cause neurons

to spike. In this model, each neuron receives, on average, K inputs from each of the three

populations: excitatory, inhibitory and external excitatory. The populations are much larger
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than the number of connections per neuron, so correlations between inputs are weak. Thus the

mean excitatory input to each population is of order K, as is the inhibition, but fluctuations

therein are of order
√
K. If the thresholds of neurons are also of order

√
K, they have a

reasonable chance of firing. This model also showed is that, where Griffith’s model predicted

that excitatory and inhibitory strengths need balance quite precisely, in this randomly connected

network setting, only the averages of excitation and inhibition need balance. Finally, the authors

pointed out that although a small increase in the input is not enough to ensure that each neuron

fires in the next time step, the chaotic dynamics of individual neurons ensures that, at any

moment, enough neurons are near threshold to fire immediately and increase the population

rate within a single time step. They propose that this explains how nervous systems can react

on time-scales much smaller than those of individual neurons (governed by the membrane time

constant). This is an early, simple form of population coding.

The model of Van Vreeswijk and Sompolinsky had two-state neurons and still discretised the

dynamics of individual neurons: updating the state of excitatory neurons once every time-step

τ and that of inhibitory neurons once every 0.9τ . The state of a neuron at update depends

solely on the value of its K inputs at that moment of update. Steps to make this approach more

biologically plausible appeared in [Amit and Brunel, 1997], where self-stability in a network of

I-&-F neurons was shown to be stable via similar mechanisms but in the more realistic setting

of each each neuron having a large number of efferent connections. In this setting, the average

membrane potential of an individual neuron sits far away from the defined resting potential.

This was called renormalisation of the resting potential. Taking things a bit further, Amit and

Brunel showed that, by creating local clusters of increased connectivity within the excitatory

population and by making these connections stronger, their network could display selective

sustained activity, a phenomenon observed in delayed response experiments. This means that

for non-specific input to the network, the network activity displays statistics similar to those of

in vivo observed background states. But, with specific, heightened input to these local clusters

(target specific input), the clusters would display significantly increased rates (∼ 5 times the

background) which were stable even after the specific input was removed. During this time, the

rest of the network displayed only slightly elevated rates. Interestingly, the existence of these

stable elevated rates depended on the relative strengths of the in-cluster excitatory connections

and on the out-of-cluster excitatory connections. Only above a specific threshold relation for

these values did a bifurcation occur and the localised, increased, stable rates appear.

In dynamical systems theory, these stable activity states are called attractors of the phase space,
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thus these networks of spiking-neurons which display stable activity states are often referred to

as attractor neural networks. During working memory tasks, cortical tissue (in vivo) displays

regions of localised heightened rate activity [Compte et al., 2003]. Thus, as pointed out by Amit

and Brunel, localised sub-populations displaying increased activity qualitatively reproduce this

phenomenon. Different spiking network models with randomised, sparse connectivity have been

quite successful in roughly reproducing the statistics observed in background, non-localised

activity3. The next question is whether models can reproduce the statistics observed in small

populations with heightened rate activity. An interesting discussion of this appears in [Barbieri

and Brunel, 2008]. The authors discuss experimental results which suggest the firing dynamics of

the selective memory subnetworks are highly irregular during active working memory, (CVISI >

1). In contrast, models like those of [Amit and Brunel, 1997, Brunel, 2000] have CVISI << 1

for the selective populations in the high-activity state. This is because in the high activity

state, these neurons are being strongly driven by supra-threshold input. Some models have

been proposed which take steps toward solving this problem but this is beyond the scope of the

current text (see [Barbieri and Brunel, 2008] for references).

1.2 The Brunel model

The model described below was perhaps first introduced in its entirety by Daniel Amit, Misha

Tsodyks and Mosha Abeles in the late 1980s and early 1990s. Many aspects of the associated

analysis, though, were done in relation to other models, such as that of Stein in 1965 and

Tuckwell in 1977. Since the precise formulation I use below comes from the work of Brunel

[Brunel, 2000] and Amit and Brunel [Amit and Brunel, 1997], I will refer to it as the “Brunel

model”.

Consider the following network formulation:

• Single neuron dynamics are given by the L-I-&-F model:

τ V̇i = −Vi +RIi, (1.3)

where i’s index from 1 to N - the total number of neurons. R is the membrane resistance and

is assumed to remain constant. τ is the membrane time constant, common to all neurons and

defines the integrative “time window” of the network. For example, inputs arriving in a window

3though there is still some debate around which models do so best.
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∆t << τ can be considered “synchronous” since, between inputs, V decays as e−t/τ and so will

have changed little if ∆t/τ << 1.

• Of N neurons, NE are excitatory, NI are inhibitory, hence N = NI + NE . In reflection

of measurement, the ratio of excitatory neurons to inhibitory neurons in the networks is

NE/NI = 4. Excitatory (inhibitory) neurons can only cause positive (negative) changes

in the membrane potential of their afferent neurons

• Each neuron receives connections from C other neurons. Of these connections, CE come

from excitatory neurons and CI from inhibitory neurons. The specific CE/CI neurons are

determined randomly (i.e. chosen from a square distribution over each population, each

neuron being equally likely). Autoconnections are not allowed.

• In addition, each neuron receives CE external connections4, simulating input from remote

cortical regions. Input on each such connection is an independent Poisson process. All

these processes have the same, fixed rate: νext. Note, the subscripts ext/int will be used

to denote all parameters pertaining to external/internal inputs or activity.

• If a neuron spikes at time t0, its efferent neurons will receive input at time t0 +D, where

D is a uniform delay across the network, approximating for axonal and dendritic delays.

• Connections from an excitatory neuron to any neuron give an input of strength J . Those

from inhibitory neurons have input strength −gJ . We call g the inhibitory gain.

• The initial (resting) membrane potential for each neuron is Vr. If the membrane potential

reaches the threshold value, Vθ, the neuron “spikes” (i.e. all its efferent neurons will receive

an input D later). Immediately after spiking, the neuron membrane potential is reset to

Vr, where it remains fixed (impervious to input) for a fixed refraction period, τrp. At the

end of this period, the membrane potential is again dynamic. For purposes of analysis,

it is only the ratio Vθ−Vr
J which defines how easily a neuron fires. Hence, without loss of

generality, we will restrict ourselves to the value Vr = 0 and hence only Vθ/J is relevant.

4This value seems highly variable. As a fraction of all excitatory connections received by a neuron in a
microcolumn of cortex, connections from without the column have been found to account for between 20% and
50% of them [Braitenberg and Schütz, 1998]. Here we have the total number of connections per neuron is
CE(2.25), so external connections constitute just under 50%.
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We assume that the total potentiation entering a cell soma can be written as the weighted (by

J ’s) sum of firing rates of pre-synaptic neurons, indexed by j:

RIi(t) = τ

C∑
j

Jijνj(t−D). (1.4)

Note that we are summing here only over the specific C neurons which are pre-synaptic to

neuron i. νj(t − D) is the mean firing rate of pre-synaptic neuron j at time t − D. This

formulation is derived from the more exact treatment of post synaptic currents entering a cell

as spike trains (see appendix C).

In the above formalism, excitatory and inhibitory neurons have the same characteristics (mem-

brane time constants, thresholds, delays, etc.), they differ only in the strength and sign of their

connection weights. Brunel extended his analysis to include some diversity in these parameters,

which we will not consider here.

A key principle in analysis of the Brunel model is sparse connectivity, namely that C
N =

CE
NE

= CI
NI

= ε << 1. This said, the number of connections received by each neuron remains

large (∼ 103−104), as this is what is evident in Biology [Braitenberg and Schütz, 1998]. For this

reason, Brunel assumed each individual connection strength to be relatively small compared

to the threshold (τJ << Vθ), otherwise only a few spikes would cause a neuron to fire and

the resultant firing rates would be extremely high, like those of the Griffiths model. These

assumptions imply a neuron requires a fairly large fraction of near synchronous inputs to reach

threshold. Assuming we can extrapolate at least roughly from the Griffiths model, we should

not find it surprising that this parameter regime cannot display self-sustained activity and hence

the networks and analysis considered in [Brunel, 2000] require non-zero external input.

a priori criticisms and shortfalls of the Brunel model

The I-&-F neuron model undoubtedly does not capture the full suit of dynamics evident in

cortical neurons. It is stressed, though, that the purpose of the model is to investigate the

emergent dynamics of the system: dynamics which result from the interplay of excitation and

inhibition and from the connectivity of the network. The choice of a simple neuron model

offers obvious benefits in this regard: easier and more efficient simulation, easier analysis and

confidence in interpretation of dynamics. What I mean by this is that, if a certain dynamic
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regime is observed which we know is beyond the dynamic repertoire of the a single neuron, we

can be confident it is the result of collective dynamics.

The connectivity of the Brunel model is quite reasonable in accounting for local connectivity

patterns [Braitenberg and Schütz, 1998]. In particular it is preferable to the simplistic models

of Griffiths and others because it reflects the high degree of connectivity (large C) present in the

neocortex. It includes synaptic/axonal delays (D) and considers simple single-neuron dynamics.

How well it approximates the effects of distal inputs is perhaps debatable, and most significantly,

it is wholly negligent of anatomy. Cortex has layered structure, consisting of between three

(hippocampus) and six (neocortex) layers [Braitenberg and Schütz, 1998]. Layers are defined

predominantly on what cell bodies are contained in the layer, and connectivity between different

layers follows definite profiles, for example: most connections from L4 go to L5 and L4 and are

predominantly inhibitory in nature. Most projections from L5 are excitatory and are recurrent

to L5, with many others feeding to L4 etc. In absolute numbers, though, the Brunel model

captures the prevailing ratio of excitatory to inhibitory neurons in neocortical systems at 4:1.



Chapter 2

Analysis of Brunel and Gewaltig

models

In this section I discuss some of the analysis of the Brunel model as described in [Brunel,

2000]. First though, I discuss the L-I-&-F neuron in the Brunel model setting and describe the

dynamics of the resultant Langevin equation. Section 2.3 consists of original work in which I

make a small adjustment to the Brunel model and provide preliminary analysis on the resultant

dynamics.

2.1 Dynamics of the Integrate-and-Fire Neuron

We begin with the expectation that each neuron receives a large number of inputs, each from a

different presynaptic cell, with the total number of inputs much smaller than the total number

of neurons. This means two arbitrarily chosen neurons are unlikely to share a common source

of input and thus should experience essentially uncorrelated input. If we additionally require

background activity rates to be low (∼ 5 Hz), we can effectively approximate the input to a

single neuron as a Gaussian process. We write1

RIi(t) = µ(t) +
√
τσ(t)ηi(t) (2.1)

1See appendix C and [Amit and Brunel, 1997] for details of argument.

12
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where ηi is a white noise process with zero mean and unit variance. For simple reference later,

this gives us the Langevin equation2.

τ V̇i = −Vi + µi(t) +
√
τσi(t)ηi(t). (2.2)

For clarity’s sake, we take a brief, qualitative look at the simple dynamics of the above Langevin

equation along the lines of [Tuckwell, 1988] and [Gerstner and Kistler, 2002]. Let X(t) :=

et/τV (t). Then Ẋ = et/τ

τ (µ(t) +
√
τσ(t)η(t)) for t > 0 and

X(t) = X(0) + τ−1

∫ t

0
eu/τ

(
µ(u) +

√
τσ(u)η(u)du

)
.

Remember η(t) is a random variable and hence this integral is in fact a stochastic one. Never-

theless we can consider the expectation value and variance of X(t):

E[X(t)] =X(0) + τ−1

∫ t

0
eu/τµ(u)du

Var[X(t)] =τ−1

∫ t

0
e2u/τσ2(u)du

Restricting ourselves to the temporally homogeneous (µ(t) = µ, σ(t) = σ) case,

E[X(t)] =X(0) + (et/τ − 1)µ

Var[X(t)] =(e2t/τ − 1)
σ2

2
du,

and we easily regain the same values for V (t):

E[V (t)] = e−t/τE[X(t)] = X(0)e−t/τ + (1− e−t/τ )µ, (2.3)

Var[V (t)] = e−2t/τVar[X(t)] = (1− e−2t/τ )
σ2

2
.

It is immediately evident that the mean and variance approach asymptotic limits:

limt→∞ E[V ] = µ and limt→∞Var[V ] = σ2

2 . For µ > 0, we can get some idea of the distribution

of escape times from the interval [V (0), θ) where θ is the firing threshold. If µ > θ, we can be

almost certain the neuron will fire. We can be even more certain if we have that µ− σ > θ (see

figure 2.1). The most interesting scenario though is when µ . θ. In this case, it is the statistical

2This equation is not very rigorously defined but has become a convention to write down. See appendix A,
equation (A.2)
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t1 t2 t3

θ

E[V (t)]

E[V (t)] + 2
√

Var[V (t)]

E[V (t)]− 2
√

Var[V (t)]

t

V (t)

Figure 2.1: For positive mean, we can expect that V (t) will reach threshold θ at time t2. With
even more confidence we can predict that it will reach θ between times t1 and t3. Calculating
t2 as a value of the input parameters is trivial but this is not the case for t1 and t3. For the case
of of normally distributed constant input, we expect limt→∞ V (t) to be normally distributed.

fluctuations of the input around the mean which cause the neuron to fire. In particular, suppose

µ = θ − σ√
2

and that a neuron has not fired for a “long time” (t >> τ). We can think of V (t)

as being in a “steady state”, normally distributed around µ. So the probability of finding it in

the region V (t) ≥ θ = µ+ σ√
2

is

λ =

∫ ∞
µ+σ

2

1

σ
√
π
e

(x−µ)2

σ2 dx.

Since η(t) is a white noise processes, fluctuations are independent, so the probability of the

neuron spiking in the infinitesimally small time interval [t,∆t) is roughly λ∆t. For N neurons

all experiencing similar (independent) inputs, the total number of spikes from all N is again a

Poisson process with rate Nλ. If we have the case that N >> k, or that neurons return to the

asymptotic state almost immediately (i.e 1
τ << λ), or that the rate of neurons recovering is also

Nλ (i.e. the system is in a stable state), then we have that the probability of k neurons firing

between t and t+ ∆t has a Poisson distribution: Pr{k in [t, t+ ∆t)} = e−Nλ∆t(Nλ∆t)k

k! .

2.2 Brunel network in the diffusive limit

Below I will review the analysis from [Brunel, 2000]. This analysis is done in the limit C
N → 0, or

that the network is infinitely large. The true mean and variance of the input in the Brunel model
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are µ(t) and σ2(t) respectively. These values will depend on the connectivity, external inputs

(νext) and global activity of the network (νint). See appendix C for a description of how these

quantities are derived. In the case of the Brunel formulation described earlier, all connections

are either excitatory or inhibitory and of fixed relative strengths. From equation (C.4), summing

over C = CE + CI = CE(1 + γ) connections, (CE excitatory and CI = γCE inhibitory), all

active at mean rate νint(t−D) we have (similarly for external inputs):

µ(t) =µext + µint(t),

µext =CEJτνext, (2.4)

µint(t) =JCEτ · (1− γg)νint(t−D),

Here the · signifies conventional multiplication of reals. Note that the external input rate is

time independent. The magnitude of the variance in the input is given by:

σ2(t) =σ2
ext + σ2

int(t),

σ2
ext =J2CEτνext., (2.5)

σ2
int(t) =J2CE(1 + γg2)τνint(t−D).

µext and σ2
ext denote the mean and variance of the input due to external inputs.

At any moment in time, the individual membrane potentials of the neurons in the system will

follow some distribution, labelled P (V, t). P is a distribution over the membrane potentials, V ,

but a function of time. In specific, when inputs to each individual neuron are essentially uncor-

related, the time-evolution of this distribution obeys a Fokker-Planck equation (for derivation

see D):

τ
∂P

∂t
(V, t) =

σ2(t)

2

∂2P

∂V 2
(V, t) +

∂

∂V
[(V − µ(t))P (V, t)], (2.6)

for V ∈ (−∞, Vr) ∪ (Vr, Vθ) and,

P (V, t) =0 for all V ≥ Vθ.

There is also a refractory probability pr(t) =
∫ t
t−trp νint(u)du, which is the probability that

a neuron is refractory at time t and hence its membrane potential is fixed at V (t) = Vr for

t ∈ [t∗, t+ τrp), where t∗ denotes the time at which it spiked. So the integral in the expression

for pr(t) is simply counting all neurons which entered the refractory state during the period τrp
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before t.

In a realisation (simulation) of the system, the global firing rate over the interval [t, t+δt) is the

number of neurons which reach threshold in that time window. Similarly, in the infinitesimal

limit, the global firing rate at time t is the rate at which the distribution changes at the threshold.

Said differently, the rate at which P flows through the boundary at Vθ is the global firing rate.

With this in mind, we define a probability current through V at time t as S(V, t), which is then

given by
∂P (V, t)

∂t
= −∂S(V, t)

∂V
,

The change of sign is to ensure that population rates are positive. Hence,

S(V, t) = −σ
2(t)

2τ

∂P (V, t)

∂V
− V − µ(t)

τ
P (V, t) (2.7)

The global, instantaneous firing rate of the network at time t is then given by νint(t) = S(Vθ, t).

2.2.1 Boundary and normalisation conditions

Our statement about the flux of P through the boundary at Vθ, and the fact that a neuron fires

instantly upon reaching Vθ (i.e. P (V, t) = 0 for V ≥ Vθ) implies our first boundary condition at

Vθ:
∂P

∂V
(Vθ, t) = −2νint(t)τ

σ2(t)
(2.8)

Continuity requirements at the reset potential provide a similar condition; that neurons which

fired at time t− τrp must have recovered at time t and “re-enter” the system. This provides the

following derivative discontinuity:

∂P

∂V
(V, t)

∣∣∣∣V +
r

V −r

= −2νint(t− τrp)τ
σ2(t)

(2.9)

We also have the natural boundary conditions to guarantee integrability:

lim
V→−∞

V P (V ) = 0. (2.10)

Finally, normalisation implies:

∫ Vθ

−∞
P (V, t)dV + pr(t) = 1 (2.11)
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2.2.2 Stationary state results

If the dynamics of this network settle into a stationary state, we expect the globally-averaged

firing rate to be essentially constant. We can write µint(t) = µint,0, σint(t) = σint,0, but the

input to each neuron is not a fixed, constant function, since different neurons will fire at different

time and there may be small fluctuations in the global rate of the network. Since the network

parameters are not evolving in time, and treat input to each neuron as a temporally homogeneous

but stochastic process. We can write this input as

IRi = µi,0 + σi,0η(t), (2.12)

where the time dependence in η(t) simply means it can have a different value depending at what

point in time it is sampled. We make similar substitutions into equation (2.6) and obtain the

coupled system

σ0

2

∂2P0

∂2
(V ) +

∂

∂
[(V − µ0)P0(V )] = 0,

pr,0 = τrp · νint,0.

Subject to conditions 2.8 and 2.10, a solution to this system is3

P0(V ) =2
νint,0τ

σ0
e−z(V )2 ×

∫ z(Vθ)

z(V )
H(u− z(Vr))eu

2
du, (2.13)

pr,0 = τrp · νint,0.

where z(V ) = V−µ0

σ0
; an expression of the distance between the membrane potential and the

mean input in units of the standard deviation of input. H is the Heaviside function. The

normalisation condition, equation (2.11), gives us an expression for the mean firing rate, namely

1

νint,0
= τrp + 2τ

∫ z(Vθ)

z(Vr)
dueu

2

∫ u

−∞
dve−v

2

= τrp + τ
√
π

∫ z(Vθ)

z(Vr)
dueu

2
(1 + erf(u)), (2.14)

where erf(u) refers to the error function

erf(x) =
2√
π

∫ x

0
e−t

2
dt.

3This is a correction to the original paper [Brunel, 2000].
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Figure 2.2: Dependence on external input in the inhibition-dominated Brunel model. The
dependence of νint,0 on ν = νext

νθ
is approximately linear, as given by equation (2.15).

Model parameters: J = 0.2 mV, CE = 4000, τ = 30 ms, τrp = 2 ms Vθ = 20 mV, Vr = 0 mV.

An immediately obvious upper limit to the firing rate is the recovery period, or νmax = 1/τrp.

We can use what we learnt in section 2.1 to define a dimensionless measure of the rate of external

inputs. From equation (2.2) and equations (2.4) and (2.5), neglecting the terms representing

recurrent inputs (i.e. setting µint = σ2
int = 0) we can solve the Langevin equation, to get

V (t) = V (0)e−t/τ +CEJνextτ . V (0) = Vr = 0 so we can see that the minimal rate and strength

of external inputs for a neuron to (asymptotically) reach threshold is:

νθ := Vθ/(CEJτ).

We can then measure external input in units of this threshold input, defining ν := νext
νθ

.

2.2.3 Firing rates

Values of νint,0 which satisfy equation (2.14) can be found numerically. These results and

analytic approximations by Brunel suggest the state space of the stable state can be roughly

separated into regions in (ν, g)-space based on firing rates (see Figure 2.3):

1. ν > 1, g < γ−1: network is strongly driven with little recurrent inhibition, so firing rates

are high, near saturation. In addition, considering networks with a large number of con-

nections, we can expand equation (2.14) in powers of 1/CE . To first order precision, this
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predicts

νint,0 ∼ τ−1
rp

[
1− Vθ − Vr

CeJ(1− gγ)

]
there is a smooth transition from this regime to the next (g > γ−1) with increasing g.

The slope of the transition, where g ≈ γ−1 becomes steeper with increasing CE .

2. ν > 1, g > γ−1:In this case, inhibition dominates the network and, since all cells are being

strongly driven, inhibitory cells don’t generally need recursive input to become active, so

sustained activity at low rates is possible. In the large CE limit we can take advantage of

the observation that consistent activity only occurs if the average recurrent activity, which

is inhibitory, just offsets the excess external excitatory input. This condition is expressed

as νint,0(1− gγ) = νθ − νext. Hence the stable state rate should approximately follow

νint,0 =
νθ − νext
1− gγ

. (2.15)

3. ν < 1, g < γ−1: In this region, two states are stable, a high frequency state and a quiescent

state. We use the word quiescent in particular to stress that, in a true realisation of this

system, the input to neurons is probabilistic so even if the mean input is sub-threshold,

there is always some (possibly vanishingly small) probability that a neuron in the network

may fire. The high activity state in this region is self-sustaining since the maximal firing

rate (νmax = 1/τrp = 500.0Hz) far exceeds the required threshold, even for small deficits

in inhibition. Of course an intermediate fixed point must exist too, but is unstable. In

figure 2.3a, we can see that the numerics find either the high-activity or the quiescent

state, depending on the initial search condition.

4. ν . 1, g > γ−1: This region is of most biological interest. For most values of g, it is

quiescent, but for a small region of g & 1/γ and/or ν . 0.75, the global firing rate

oscillates between quiescence and short bursts of activity. The periods of silence depend

on how long it takes each neuron to reach threshold again depending only on external

input and hence is principally dependent on 1/τ .

2.2.4 Inter spike intervals (ISIs)

So far we have considered regions of the parameter space of the Brunel model based on firing rates

but an equally important characteristic statistic when trying to produce observed background
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neural activity is the distribution of inter-spike intervals (ISIs). If each neuron is behaving like a

Poisson process, we can expect the index of dispersion of spike times (D := σ2

µ ) to be close to 1.

Similarly, the time between events, or inter spike intervals should be exponentially distributed

and hence the coefficient of variation of this quantity (CV := σ/µ) should be approximately 1

in the regions of low firing activity.

The membrane depolarisation of an arbitrary neuron in the network is a random variable,

obeying the Markov diffusion process described by a stochastic ODE: equation (1.3). The input

term is equation (2.1). In the stable states solution (equation (2.13)), the average ISI is given by

one-over the mean firing rate, 1
νint,0

= µ0,ISI (see equation (2.14)). The ISI is simply the escape

time of the random variable V (t) from the interval (−∞, Vθ), given that the starting value was

Vr. So the mean ISI is the first moment of the escape time about zero. By the theory laid out

in appendix B.3, we can solve for higher moments of the ISIs. Note that the escape times, or

ISIs are here considered functions of the initial/reset potential, Vr, so we let x = Vr.We refer

to the definition of the infinitesimal generator of a diffusion process, or equation (B.5). For the

Brunel model this is

α(x) = lim
∆t→0+

E[X(t+ ∆t)−X(t)|X(t) = x]

∆t
= E

[
Ẋ(t)|X(t) = x

]
,

α(x) = E[τ−1(−V (t) + µ0 + σ0

√
τηi(t))|V (t) = x]

= τ−1(−x+ µ0),

since ηi(t) is a white-noise process with zero mean. A similar calculation gives the infinitesimal

variance:

β(x)2 = Var[τ−1(−V (t) + µ0 + σ0

√
τηi(t))|V (t) = x] =

σ2
0

τ
.

The resultant infinitesimal generator for the process is:

(Af)(x) =
σ2

0

2τ

d2f

dx2
+ τ−1(µ0 − x)

df

dx
, (2.16)

As pointed out by [Tuckwell, 1976], the higher order moments about zero can be found by

solving equation (B.14). In our case, this is

σ2
0

2

d2µn,ISI
dx2

+ (µ0 − x)
dµn,ISI
dx

= −2τµn−1,ISI(x)
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Figure 2.4: Numerically calculated CV ISI values for the Brunel model in ( νextνthr
, g) space.

Variance in the interspike intervals is essentially zero in the excitation dominated regime. They
jump quickly to ∼ 0.8 once inhibition dominates and gradually approaches 1 with increasing
inhibition, though is always slightly less than 1. These CV values are calculated from the νint,0

values given in figure 2.3a

The second moment about zero, for n = 2 and µ1,ISI = 1
νint,0

(x) (see equation (2.14) for Vr = x)

is

µ2,ISI = µ2
1,ISI + 2πτ2

∫ z(Vθ)

z(Vr)
ex

2
dx

∫ x

−∞
ey

2
(1 + erf(y))2dy,

from which we can calculate the variance, since σ2
ISI = µ2,ISI − µ2

1,ISI . The square of the

coefficient of variation, (CV )2 =
σ2
ISI

µ2
ISI

, is then

(CV )2 = 2τ2πν2
int,0

∫ z(Vθ)

z(Vr)
ex

2
dx

∫ x

−∞
ey

2
(1 + erf(y))2dy (2.17)

Given solutions for νint,0 like those in figure 2.3, we can evaluate the CV value over a region of

the (ν, g) plane.

Brunel used data like that in figure 2.4 to classify the dynamics as of this network as “regu-

lar/irregular” depending on whether the CV value of the inter-spike intervals is approximately

1 (as it should be for exponentially distributed spikes). Unsurprisingly, the CV value is approx-

imately zero in the high activity state and approaches 1 quickly once inhibition dominates and

the rates decrease. The CV only approaches 1 though, for most of the inhibition dominated

regime 0.8 . CV < 1, so the dynamics do not appear to be truly Poissonian. Brunel used this

result to classify regimes as regions of the (ν, g)-plane as Regular or Irregular.
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In [Brunel, 2000], the author was principally interested in considering how solutions behaved in

the (ν, g) plane. Brunel separates this plane into regions along the lines of regular/irregular firing

and synchronous/asynchronous firing. Here, synchronous does not refer to true coupling between

individual neurons. Rather, where the global activity displays some oscillatory behaviour, it is

deemed synchronous, since “if the instantaneous firing rate νint varies in time, the spike trains

will have some degree of synchrony”. In contrast, he states spike trains “are uncorrelated only

when global firing frequency νint is constant.” The diffusive limit assumptions used in deriving

the Fokker-Planck equation mean that the analytic predictions will not hold for networks where

neurons experience significant correlations “beyond those induced by a common time-varying

firing rate.”. Before considering a specific extension to Brunel’s parameter regime, we refer to

figure 2.5 for an overview of the dynamic regimes this model produces. The key points are

that no non-zero activity is stable for νext
νθ

values less than about 0.75 and that, even in regions

dubbed “irregular”, ISI CV values are less than 1.

Note that in [Brunel, 2000] considerable attention is given to showing where in the (ν, g) plane

the mean global rate displays oscillatory dynamics. This is done by the usual means: using

perturbation theory to find the Hopf bifurcation lines of the Fokker-Planck equation’s steady

state solution. Though interesting, this component of the analysis was not particularly useful

for the analysis which follows here since one needs a closed (approximate) expression for the

internal firing rate far from νint,0 = 0. Some progress has been made in this regard but, for

purposes of brevity, the analysis has been omitted here.

2.3 Extension to Gewaltig Model

In [Gewaltig, 2013] it was shown by simulation that Brunel-like models could produce self-

sustained activity in the absence of external inputs for long periods of time, provided the synaptic

strengths J were relatively strong compared to threshold (VθJ ∼ 3− 7). This formulation results

in a trade-off: simulations would remain active for long periods for large synaptic inputs, but

usually with firing rates of 30 Hz or more - much larger than generally observed in tissue. It

was suggested that a Brunel network could become self-sustaining if only a small fraction of

connections were strengthened significantly. In this section, I try to provide some novel analysis

showing how this is possible. I will refer to networks of this form as Gewaltig models. The

parameters for the Gewaltig model are identical to those above, except that a random fraction

f of inputs to each neuron are strengthened by a factor α. Returning briefly to the spike train
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Figure 2.5: SR stands for synchronous regular, AI for asynchronous irregular etc. A: The
“canonical” case. For adequately driven, excitatory dominated states (g < 4, νext

νθ
> 0.75),

neurons fire synchronously and regularly near saturation. Once inhibition dominates, activity
becomes asynchronous: the global rate is approximately constant and individual neurons fire
due to fluctuations from a sub-threshold mean: hence spike times are irregular. For large νext
and large g, a Hopf bifurcation occurs to a region of fast global oscillation, with synchronous
irregular firing. For g > 4 and νext

νθ
∼ 1, the AI state again undergoes a Hopf bifurcation to slow

global oscillation with irregular individual neuron firing. B-D show how these bifurcation lines
shift for differing delay values. C: forD = τrp = 2ms, a large portion of the Synchronous Regular
region becomes Asynchronous. D: for D = 3 neurons can recover between consecutive spikes
from the same afferent neuron, so the network operates on somewhat of a “time grid” defined
by the delay, hence acitivity is synchronous. For the inhibitory dominated regime, though,
a neuron may be receiving enough inhibition not to spike, so spike times are not necessarily

regular. The dotted line indicated where the stable quiescent state destabalises.

Network Parameters: J = 0.2 mV, CE = 4000, τ ≈ 31 ms, τrp = 2 ms Vθ = 20 mV, Vr = 0 mV.

Taken from [Brunel, 2000].
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formulation of equation (C.1), the input to each cell becomes:

RIi(t) = τΣCn
j JijΣkδ(t− tkj −D) + τΣCα

j αJijΣkδ(t− tkj −D), (2.18)

where Cn and Cα are integers satisfying Cn + Cα = C and Cα/Cn = f .

As a crude first approach, let us assume we can still represent this input as a Gaussian process,

though with an appropriate adjustment of the mean and variance. Using the subscript α to

denote contributions from this class of stronger connections, the input from these connections

to an arbitrary neuron’s soma can be written as

RIi,α(t) = µα(t) + σα(t)ηi(t),

where

µα(t) =fCEαJ(1− γg)ν(t−D)τ = µintαf

σ2
α(t) =fCE(αJ)2(1 + γg2)ν(t−D)τ = σ2

intα
2f (2.19)

and µint and σint are those values of the conventional Brunel model (equation (2.4) equa-

tion (2.5)). We can thus think of our system as now consisting of an extremely sparse, strongly

connected network embedded in a sparse, weakly connected network. Summing the inputs from

both networks to neuron i we obtain expressions for the mean and variance of the total input

to each neuron,

µ(t) =µext(t) + µint(t)(1 + (α− 1)f),

σ2(t) =σ2
ext + σ2

int(t)(1 + (α2 − 1)f). (2.20)

Looking at these expressions, we can already see that, for values of f = 0.01, α = 20, the mean

input to each neuron is only mildly effected, but the change in variance of the internal input

grows nearly five-fold. This is important because, as shown in [Vreeswijk and Sompolinsky,

1996], Poissonian statistics of the spike times can be the result of internal network dynamics

even if the external input is constant (σext = 0) and, as explained in [Gerstner and Kistler, 2002],

an individual neuron displaying Poissonian spiking statistics is associated with noisy input with

sub-threshold mean (see section 2.1).
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2.3.1 Fixed-point analysis

For ease of discussion, let us now re-write equation (2.14) as

G(νint, ν, g, f, α) =

(
τrp + τ

√
π

∫ z(Vθ)

z(Vr)
dueu

2
(1 + erf(u))

)−1

− νint, (2.21)

where dependence on ν = νext
νthr

, f, g, α lies in the function z(V ) = V−µ(νint,ν)
σ(νint,ν) , with equa-

tions (2.4), (2.5) and (2.19) and equation (2.20). G is then a function of dimensionless pa-

rameters and again, mean firing rates are found by solving for roots of equation (2.21) in νint.

Roots of G for ν 6= 0, f = 0 correspond to fixed points in the Brunel model while for ν = 0, f 6= 0

we have the Gewaltig model.

We let ν = 0 and consider, without loss of generality, the Vr = 0 case. Then the upper and lower

limits of the integral in G can be written zθ = Vθ−µint
σint

= Vθ−µGνint
σG
√
νint

and zr = −µint
σint

= −µG
√
νint

σG

respectively, where

µG : = CeJτ(1− gγ)(1− (α− 1)f)),

σ2
G : = CeJ

2τ(1 + g2γ)(1 + (α2 − 1)f)).

In the limit ν+
int → 0, zθ →∞ while zr → 0 and, since the integrand is positive everywhere, the

integral becomes infinite, so G becomes zero. Note that this would not be true for the ν 6= 0

(Brunel) case, wherein the integral limits would remain finite and hence G would be small but

non-zero.

As νint gradually increases from zero, initially G ∼ νint but eventually the integral shrinks

rapidly and the term
(
τrp + τ

√
π
∫ z(Vθ)
z(Vr)

dueu
2
(1 + erf(u))

)
becomes of comparative size to 1/νint.

The integrand is a rapidly growing function and so the integral shrinks considerably when the

distance between the integral limits shrinks rapidly. The lower limit of integration follows

zr ∝
√
νint but for small νint, the upper limit is dominated by the term zθ ∼ Vθ

σG
√
νint

. So a

rough value for the point at which the integral becomes small enough for G to first re-intersect

the axis occurs when the terms in zθ begin to balance each other out. This can be found by

solving

dzθ
dνint

= −1, (2.22)

⇒ ν−(2σint
√
ν− − µint)− Vθ ≈ 0. (2.23)
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We use ν− to denote this lower, unstable fixed point.

In the limit νint → ∞, we can see that zr → zθ → −µint
σint

√
νint and hence the integral closes

off, becoming zero. The first term of G then becomes τ−1
rp and hence the νint value once again

dominates and G becomes negative. Hence we know there must be a third, upper root, denoted

ν0. This root is the one we are most interested in as it represents self-sustained non-zero firing

rates. Since the limits approach each other, we can rewrite the condition G = 0 as

τrp + τ
√
π

∫ µint
σint

x+ε(x)

µint
σint

x
eu

2
(1 + Erf(u))du− 1/x2 = 0, (2.24)

where x =
√
νint and ε(x) = Vθ

xσint
. Hence ε shrinks with growing νint and we can expand the

integral around ε = 0. Letting a := −µint
σint

x, this gives us the expressions (to order O(ε3(x))

τrp + τ
√
π

(
ea

2
(1 + Erf(a))x+ (

1√
π

+ aea
2
(1 + Erf(a)))x2

+
1

3

(
2a√
π

+ (1 + 2a2)ea
2
(1 + Erf(a))

)
x3

)
− 1/x2 = 0

(2.25)

Numerical solutions to this expression give a fairly accurate approximation to the upper root

but is of little use for perturbation analysis of the Fokker-Plank equation (see [Brunel, 2000]).

Figure 2.6 shows a comparison of several realisations systems: the Brunel model, Gewaltig model

and the Gewaltig model with external input. Most importantly, it shows that the true Gewaltig

model (ν = 0, figure 2.6a) does not have a globally stable non-zero fixed point, but always has a

stable fixed point at νint = 04. Thus the next fixed point from the origin is expectedly unstable

while the third, upper fixed point is again (locally) stable. If we consider external input ν too,

we can see that the appearance of bi-stability can only occur when ν = 0. If ν > 0, increasing

f simply has the effect of shifting the single root up. Thus we have that the system experiences

a codimension-2 imperfect saddle-node bifurcation [Strogatz, 1994]. The strength of external

input, ν, is known as an imperfection parameter. For ν > 0, only one fixed point exists and is

globally stable but for ν = 0 there is the possibility of a saddle-node bifurcation with increasing

f to produce the fixed points ν− (unstable) and ν+ (stable). Note that throughout this text we

will denote the upper fixed point as νint,0 or sometimes just ν0.

4To be precise, equation (2.14) (and hence the derived equation (2.21)) is ill-defined when both νext = 0 and
ν0 = 0. It is obvious, though, that the system, with no external input, cannot ever fire for νint(0) = 0. For
numerical root finding purposes, this is not a problem, as the limit limνint→0 G(νint, ν = 0) = 0.
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Figure 2.7a shows the sigmoid nature of the root ν0 in a reasonable region of the (f, g) plane,

while figure 2.7b shows how rates decrease with growing g.

2.3.2 Firing rates and CV values

Compare the red line in figure 2.6a (Gewaltig) to the blue-dashed line in figure 2.6b (Brunel).

We can see that, to produce similar low firing rates, this Gewaltig model (α = 30) needs only

a very small fraction of strengthened connections (f = 0.006) but that the upper stable fixed

point and intermediate unstable fixed point lie quite close together. If even a small amount of

external input is added (the red line in figure 2.6b) the value of the stable-state rate increases

significantly. Hence we have that firing rates predicted by the Gewaltig model are significantly

higher than those predicted for the Brunel model with similar parameters. Of course, with

“fine tuning”, the Gewaltig model can have ν0 values less than 10 Hz but, as explained in the

following chapter this results in a vary small basin of attraction for the upper fixed point.

Equation (2.17) allows us to calculate CV values for the Gewaltig model too. These are plotted

for the canonical parameter set in figure 2.8. The first thing to note is that the CV values

predicted for the inhibition-dominated region are significantly more than 1, unlike in the Brunel

case. This suggests that the inter-spike intervals of individual neurons are distributed very much

exponentially. This is in agreement with what we would expect from the results of [Vreeswijk

and Sompolinsky, 1996], where a sparse but strongly connected network displayed highly chaotic

dynamics. High ISI CVs were also observed by the author of [Gewaltig, 2013] in the simulation

data. In that paper it was noted that ISI data could be separated into multiple sets, each

well-fitted by a Poisson process of a different rate. The global distribution of ISIs is then simply

the convolution of the various exponential distributions with different rates. These widely

distributed ISI values point to the bursting dynamics of neurons in the network. What this

means is that, if we observed an individual neuron, it would appear to switch between periods

of relatively large ISIs and short “bursts” of rapid firing. In all, these results agree with the

intuition obtained from section 2.1 and equation (2.20): the significant increase in the input

variance leads to larger fluctuations being experienced by each neuron, even though the mean

input remains essentially balanced. This results in a wider spread of the membrane distributions

as they leave the resting state (see figure 2.1) and hence a wider distribution of ISIs.
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Figure 2.8: ISI CV values of the Gewaltig Model. CV values are zero over the excitation
dominated region, as neurons are firing rapidly and repeatedly here. The CV value “spikes” in
the transition region, where g ' γ−1 = 4, though rates are still high. This is because, in this
region, the population rate fluctuates enormously. CV values remain significantly larger than 1
for g > 4. This supports the observations of [Gewaltig, 2013] that, in simulations, neurons in
the display bursting spiking patterns (see text). Note the increase in CV with increasing f for

fixed g.

Parameters:J = 0.2mV, CE = 4000, τ = 30ms, τrp = 2ms Vθ = 20mV, Vr = 0mV.



Chapter 3

Comparison to Simulations and

Limitations

The analysis described in the preceding chapter allows us to predict whether we should find self-

sustaining dynamics in systems of sparsely connected networks of integrate and fire neurons. As

a first step in testing the validity of this analysis, we used NEST software to simulate realisations

of these models for different parameter values. See appendix E for descriptions of the simulation

details. In this chapter, we will discuss the results of these simulations and compare them to

the predictions of the analysis.

3.1 Rates and Inter Spike Intervals

The simple adjustment of the Brunel model to the Gewaltig model (as proposed in section 2.3)

has allowed us to capture two essential aspects evident in the simulation results of [Gewaltig,

2013]: the bifurcation to the existence of self-sustaining states and the dramatic increase in

variability of spike rates, pushing inter-spike interval CVs well above unity for the inhibition

dominated case. It also allows us to roughly estimate the survival times of network realisations,

as discussed below in section 3.2.

Figure 3.1 shows the some analytically predicted rates compared to those of simulations. As f

increases, the analysis increasingly underestimates the rates found in simulation. We can under-

stand why this is the case due to a break-down of the diffusion approximation with increasing

f . Our analytic formulation of the Gewaltig model relies on the validity of the Fokker-Planck

32
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Figure 3.1: The blue line indicates the analytically predicted firing rates of a Gewaltig system
for differing f values. The lower, red line, shows the value of νθ (equation (3.1)) for the same
system. This is an estimate of the “boundary” of the basin of attraction for the fixed point ν0.
The error bars span two standard deviations of the firing rate, namely 2

√
ν0. The dots denote

the mean global firing rate from multiple, independent simulations for that f value. No values
are given for f = 0.005 because no networks remained self-sustaining for this case. For the
f = 0.01 case, several simulations survived for less than 50 ms (see figure 3.2) and so the total
sample size of spikes were very small. Calculated global averaged rates for these realisations
were low and these are the dots which appear below the red line. See the text for a discussion

of the differences in rates observed and those predicted.

Network parameters: CE = 103, ε = CE
NE

= CI
NI

= 0.1, γ = CI
CE

= NI
NE

= 0.25, g = 5, τrp = 2 ms, τ = 30
ms, J = 0.1 mV, α = 40.

description of the system. This equation is valid in the diffusive approximation limit (ap-

pendix C.2) where the membrane potentials can be described by a diffusion process because

the global activity is well approximated by a mean rate with normally distributed fluctuations

and individual inputs are small. But for large connection strengths, individual inputs are large,

causing “jumps” in the membrane potential. These diffusive limit approximation no longer

holds. This is why the work in [Gewaltig, 2013] and [Kriener et al., 2014] is done by simula-

tion. In the “strong connection” limit, the inputs to individual neurons are better described

by a jump process (or random walk). For the Gewaltig model, as f simulations should they

become increasingly better approximated by diffusion processes with significant jump compo-

nents - or jump-diffusion processes rather than simple diffusion processes. The full general form

of the stochastic integral equation which describes a Markov process with diffusion and jump

components is given in appendix B, equation (B.9).

So the natural improvement to our analytic model would be treat the membrane potentials of
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f 0.01 0.015 0.02

Analysis 1.33114 1.57951 1.76054
Simulation 0.511781± 0.172527 1.99828± 0.361008 2.68477± 0.302494

Table 3.1: Comparison of the coefficients of variation (CVs) for simulations and analysis of
the “canonical” Gewaltig model during the self-sustaining states. Mean and standard deviation
of CV is given for n = 10 realisations of each simulation. Both analysis and simulation capture
a key feature: that self-sustaining states are highly irregular, with CV s > 1. For f = 0.01 the
majority of simulations have very short survival times, so there are very few inter spike intervals
to gather. This data is somewhat less reliable and could be improved by running a much larger
number of simulations. With increasing f , simulations record larger CVs than predicted by the
analysis. This is most likely due to the increasing inaccuracy of the diffusion approximation
in accounting for the fraction f of strengthened connections.Simulation parameters: CE = 103,

ε = CE
NE

= CI
NI

= 0.1, γ = CI
CE

= NI
NE

= 0.25, g = 5, τrp = 2 ms, τ = 30 ms, J = 0.1 mV, α = 40.

neurons in the Gewaltig model as jump-diffusion processes with the jump component given by

a compound Poisson processes designed to approximate the inputs from the fCE strengthened

connections. We then have a natural extension to the Fokker-Planck equation, similar to that

described in [Inordunatum, 2013], namely

τ
∂P

∂t
=
σ(t)

2

∂2P

∂V 2
+

∂

∂V
[(V − µ(t))P ]− λP (t, V ) + λ

∫ ∞
−∞

Q(S)P (t, V − S),

where λ = fν(t) is the mean rate of the jump component and Q(S) is the distribution of jump

sizes. When solving for the stationary state value of P0(V ), we will be solving an integro-

differential equation or, at best, difference-differential equation in P0(V ). I am currently un-

dertaking to analyse this formalism to see if we can improve on the predicted values of firing

rates.

For now, we can gain some insight by noting that this jump term will increase the variance in

the input to individual neurons, more so than the simple diffusion introduced in equation (2.20).

We would expect this enlarged variance in input to push firing rates up, as well as increase the

ISI CV of simulations above those predicted by the analysis. This inclination is supported by

the data in table 3.1 where simulations measure significantly larger CV values than predicted

by the analysis. See chapter 4 and [Kriener et al., 2014] for further support of this argument.

3.2 Survivability of stable-states

In the analysis of chapter 2, we are studying a deterministic model for the expected, or mean,

values of firing rates. In simulations of the networks, the random connectivity of the independent

realisations, as well as the random nature of the initial input to the network introduce noise
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to the system. As mentioned in chapter 1, and supported by simulation and our earlier CV

analysis, we expect the neurons to fire like Poisson processes and, hence, the global rate is also

a Poisson process. So we do not expect a (finite network size) simulation to rigidly maintain

a firing rate of νint,0, rather we expect the firing rate to fluctuate around this value. For the

Brunel network, this is not a problem as the mean-field analysis predicts only the single mean

rate is stable, so for small fluctuations, the mean firing rate always returns to νint,0. But for

the Gewaltig network there is always some non-zero chance that the network could fluctuate

enough from the mean (νint,0) such as to leave the attractor basin1. Since there is only one

other attractor (the silent state), the network would then return to the silent state. A good

question, then, is how likely this is to happen?

Below we develop a simple means of predicting the survival time of realisations of Gewaltig

networks, giving us an idea of how stable the model is for different parameters. It makes

sense to consider “survival time” because, if fluctuations are independent and of arbitrary size

(distributed around the mean: νint,0) then, given long enough, the probability of a “large

enough” fluctuation occurring approaches 1. Note that, after this work was done, the author

became aware of a very similar approach used in [Kriener et al., 2014]. We use the diffusive

limit approximation from appendix C.1. We assume that the network is unlikely to maintain its

activity if the mean recurrent input drops below that required to reach threshold in the Stein

model, namely2

ν0(t) <
Vθ

CEJτ(1 + (α− 1)f)
= νθ.

Note that here we write ν0(t) to denote the average firing rate across the network of a simulation

which is no longer receiving external input. As we’re assuming fluctuations to be normally

distributed around the mean rate of νint,0 (and statistically independent), the probability that

the global firing rate drops that low is given by

Pr {ν0(t) < νθ} =
1

2
− 2√

π

∫ νθ−ν0√
2ν0

0
e−u

2
du (3.1)

We can see that although small values of f predict low rates, they also predict increased likeli-

hood of network failure since the mean rate is well within a standard deviation of the threshold.

1Note that, in the infinite network limit, these fluctuations are negligible, hence we speak of the expected
value fixed point, νint,0, as being “stable” in the earlier analysis.

2Note that we do not say ν(t) becomes unstable if it fluctuates below ν−. Equation (2.21) is not a dynamic
equation governing ν(t), rather it governs the dynamics of E[ν(t)] in the infinite network limit. Hence we use a
normally distributed random process to approximate the global mean, ν(t) fluctatues during a simulation.
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Figure 3.2: Lines denote the value of equation (3.2) for three f values, evaluated for the ν0
values predicted by analytics. Dots denote the final spike times of simulations of that system.
The dots are placed on the lines to improve readability, as that is the calculated probability of
a simulation surviving that long. The majority of simulations for f = 0.02 survive almost 10
times as long as simulations for f = 0.01. The distribution of survival rates indicates that decay
to the ground state is not a simple effect of dampening due to feed-back being predominantly
inhibitory. Note that in no way does the value of f effect the ratio of excitation to inhibition
and that, in all cases, simulations were driven with the same initial Poissonian activity for a

duration of 200 ms.

Simulation parameters: CE = 103, ε = CE
NE

= CI
NI

= 0.1, γ = CI
CE

= NI
NE

= 0.25, g = 5, τrp = 2 ms,
τ = 30 ms, J = 0.1 mV, α = 40.

Since the diffusive approximation applies in the N → ∞ limit, our calculation should become

increasingly accurate for larger network sizes.

We can take this analysis one step further and attempt to anticipate how long a network for

which our mean-rate analysis predicts stability should actually survive. We note that the firing

rate at time t depends principally on the rate at time t − D. Suppose we can then treat

fluctuations in the global firing rate over periods of D as mutually independent events. The

probability of a simulation surviving from t = 0 to at least time tend is then the probability of

it surviving all intervals of length D up until tend. This is given by

Pr {νint(tend) > 0} =
1

2
+

2√
π

∫ νθ−ν0√
2ν0

0
e−u

2
du. (3.2)

Figure 3.2 shows the predicted survival rate of the Gewaltig model for various f values. For

comparison, it also shows the survival time of multiple small-scale simulations of the system.

There is obviously a large variation between the survival times of individual simulations, for
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example, simulations with f = 0.02 survived for between less than a second to more than 10

seconds. Still, there is a strong dependence on f in survival times, with most networks with

f = 0.02 surviving more than 100 times as long as simulations with f = 0.01.

At a late stage of preparation of this thesis, the author became aware of the work in [Kriener

et al., 2014] which is an extension of the work in [Gewaltig, 2013]. Kriener et al. focus on the

strong connection case. They point out the saddle-node bifurcation to self-sustained activity as

a result of increasing synaptic strength, but do not note that, if we consider the external input

too, we have the co-dimension two bifurcation mentioned in section 2.3.1. Since their work

is predominantly numerical, they make use of some of the detailed connectivity data in [Song

et al., 2005] and argue that this supports the existence of self-sustainability in cortex. They

monitor the membrane potential of a neuron in the network with “infinite threshold” which

shows how fluctuations in the population rate can push the input of an individual neuron well

above threshold for relatively long periods of time (several times the reseting period τrp). It

is during these periods that the neurons are observed to be bursting. They provide similar

calculations to predict the survival time of simulations to those given above. They too assume

(and support with simulation) that network rate fluctuations are normally distributed and state

that “If the basin of attraction is smaller than the characteristic fluctuation size, the system can

escape the attractor and run into the trivial attractor at zero rate.” They obtain exponential

increases in survival time (by simulation) with increasing connectivity J . In their discussion,

they point out that their analysis (using the Abeles two-state model [Abeles, 1982]) also under-

predicts firing rates seen in simulations. They state that part of the fault is the self-consistency

argument of the analysis: assuming the network neurons are behaving like Poisson processes, it

seeks to re-produce a process with variance greater than that of a Poisson process. Simulations

show that, in the self-sustaining state, neurons show greater variation than that expected for a

Poisson process, which must be incorporated into the analysis.
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Conclusions

Networks consisting of simple neuron models, such as the integrate-and-fire neuron, do not

capture the detail and parametric complexity of real biological systems. A broad, generally

open question in all of theoretical biology (and modelling at large) is how much of what we

observe is necessary for function? Or is it simply the complex machinery evolved by nature to

produce a beneficial function? Spiking-network models help us to address this by seeing how

much of the dynamics and computation we observe in biology can reproduced without using

structures with as much complexity as real biological neurons (i.e. ion channels, dendritic effects,

etc.). They help us to develop our intuition for the more complex biological processes occurring

at the network level. These “toy models” allow us to relate observed dynamic processes to

theoretical computational processes which helps to guide future, more costly experiments. In

this thesis, the underlying mathematical principles are emphasised and with good reason: if we

hope to develop more sophisticated models which better capture the dynamics and higher-order

statistics observed in experiments, young theoretical neuroscientists will need to be increasingly

adept at mathematical analysis [Gerstner et al., 2012,Laing, 2014,Mitry et al., 2013].

The key points to take away from this thesis are:

• Theoretical networks of sparse and randomly connected integrate-and-fire neurons can

maintain locally stable self-sustained activity of the mean network firing rate. We can

think of this as coming about via a codimension-2 imperfect saddle-node bifurcation in

the (νext, f) plane, where νext is the external input (imperfection parameter) to the system

and f the fraction of strengthened connections.

38
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• All noise in the Gewaltig model is introduced by randomised external input and ran-

domised connectivity. Thus although the expected value of the global firing rate is locally

stable, for any individual realisation of the system there is a probability that the trajectory

of the system will escape the basin of attraction for the upper fixed point and decay to

the silent state. Under the diffusive limit approximation and the arguments in chapter 3

we expect networks with a larger strengthened fraction (larger f) to survive longer and

this is indeed what we find. These results are in agreement with the similar analysis given

in [Kriener et al., 2014]. Any realisation of such a network will become silent in finite

time.

• Individual neurons switching between bursting/low-rate firing in these models does not

require the inclusion of constant external noise or cellular bi-stability. It is be observed

as a result of network dynamics and results in large variances of inter-spike intervals,

something widely observed in experiment.

If we interpret a Gewaltig network as a sub-network of a larger tissue, then the self-sustained

states shown have persistent activation qualities similar to those observed in delay response

experiments [Compte et al., 2000, Compte et al., 2003]. This mechanism for working memory

was developed in [Amit and Brunel, 1997] but, as pointed out in [Barbieri and Brunel, 2008],

the ISI statistics in the delay activity states of that model are far from random (CV<< 1).

The Gewaltig model discussed here overcomes this problem, with CV values of the order of

1.7−2.6 (in simulation) for the self-sustained activity state (f = 0.015−2). These are extremely

cautionary conclusions and more work must be done on simulating and analysing this model in

the sub-network context.

From the models and and associated papers discussed in this thesis, the broad conclusion taking

shape is that the dynamics of cortical substructures can be captured as a combination of external

driving and those of self-sustained activity, which is possible due to the presence of a smaller

number of significantly stronger connections [Kriener et al., 2014]. The connectivity data we

have for these brain regions allows for both to be present and, while one easily allows for the

background rates observed, the other captures the high variability of inter-spike intervals and

the burstiness of individual neurons. There is no doubt that much detail could be added to these

models in terms of connectivity1 which may help them better fit a wider array of experimental

1A notable exception to this may be accounting for the strong connectivity clustering observed in [Song et al.,
2005]. This would introduce significant correlations to neuron spike trains which makes analysis more difficult
but is presumably essential for information processing.
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data but I do not feel this will bring significant insight to our understanding of neural dynamics

or neural computation. In analytic studies we often differentiate between “weakly connected”

and “strongly connected” models, but we know that, in biology, most networks have long-tailed

connectivity distributions. Similarly, I feel that arguments that these models require require

“fine tuning” to produce reasonable spike statistics are invalid, since the analyses only consider

the means and variances or the resultant input [Renart et al., 2007,Vreeswijk and Sompolinsky,

1998,Vreeswijk and Sompolinsky, 1996]. There is still work to be done in assimilating this line

of research with others. For example, the work of [Sussillo et al., 2007] proposes an alternative

means for stabilizing intermediate firing rates, namely by the mechanism of short-term synaptic

plasticity. Short-term synaptic plasticity is a widely accepted phenomenon [Tsodyks et al.,

1998] and there is currently much work underway to acceptably include it into spiking network

models.

The overall conclusion of the collective literature on networks of simple spiking neurons is that

this framework is steadily growing to capture the dynamics commonly observed in cortical tissue

experiments. This provides increasing support for the argument that sophisticated neuron-level

dynamics (or sub-neuron dynamics, for ion currents etc.) are probably not fundamental to

capturing the network level dynamics observed in experiments. In particular it suggests that

we may be able to understand and reproduce the information processing which occurs in neural

tissue without complex individual neuron structures. This is by no means conclusive but, if

we combine this trend with the increasingly accepted idea that neural computation occurs

predominantly due to activity at the micro-network scale, we begin to see a picture in which

brain-like information processing can be achieved with systems of vastly less complexity than

that observed in biology.

The approach taken in this thesis is lacking in some key regards. Firstly, all of the models

discussed are constructive, trying to reproduce observed activity statistics from “first principles”.

This is the natural approach of biological modelling but the field has reached the point where

the approach needs changing. We should see observed firing rates and inter-spike-intervals as

the result of some underlying information processing procedure. They are benchmarks against

which to check whether our models for information processing are in agreement with biology

[Ostojic, 2014]. This is the direction in which computational neuroscience research is going.

Important new themes of research include the consideration of correlations in global network

activity [Ostojic et al., 2009, Tchumatchenko et al., 2010, Grytskyy et al., 2013] and focus on
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the process of coupling and synchronization between individual neurons [Knoblauch et al., 2012]

via mechanisms like spike timing dependant plasticity (STDP) [Markram et al., 2012].

The second point is similar: we should not see the connectivity data as an observed, neces-

sary parameter to achieve the network dynamics we want. Rather we should expect observed

distributions to be the result of the dynamic processes of synaptic plasticity and/or learning.

Multiple branches of research are already pursuing this [Levina et al., 2007,Torres and Kappen,

2013] with some fascinating results. An intriguing idea is that neural systems perform compu-

tations on time series of spikes and that this process is optimised if the system dynamics are on

“the edge of chaos” [Bertschinger and Natschläger, 2004]. I feel this is the next major hurdle in

the study of spiking neural networks: understanding how the interplay between network spike

dynamics and network plasticity dynamics result in information processing.

Development of detailed spiking neural networks and efficient means of simulating them can

provide us with several tools for neuroscience. The first is a means to quickly gather insight

into how observed connectivity data (or shifts in connectivity data) should effect network level

dynamics. The other is a platform for the design and testing of information processing models,

based on spikes. The principle mathematical challenges posed by the field are:

• the design and analysis of simple neural models and synaptic dynamics models which

sufficiently capture those observed in the lab (essentially dealing with complexity),

• bifurcation analysis in the (often large) parameter space of the networks,

• analysing the coupled dynamics of networks and connections,

• designing and analysing means by which information can be encoded by spiking systems

and understanding how algorithms would be executed to process this information.
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Measure Theory to Stochastic

Calculus

The principle mathematical techniques used in the analysis of spiking neural network models

are probability theory, the theory of stochastic processes and the theory of dynamical systems.

Although the analysis presented in this thesis does not draw on the deep results of these fields,

for purposes of rigour, I give several appendices outlining important definitions and key results.

I will assume the reader has some intuitive understanding of probability theory. Most important

theorems will simply be stated and proofs generally omitted but referenced.

Measure theory studies the abstraction of the concept of “measuring” the size of subsets of a

set. The “size” is given by the values taken by a function when evaluated on a subset. This

function is called a measure. The purpose of this section is to familiarise the reader with the

underlying measure theoretic concepts and basic stochastic calculus as this will be beneficial

when reading the analysis. In this section we define the fundamental structures and results from

measure theory used in stochastic calculus and the section culminates in the definition of the

Itô integral and Itô processes. Proofs have been entirely left out for brevity. The progression

followed below is a simplification of that in [Kopp, 2011] and I have used similar notation. The

author also consulted [Doob, 1953] and [Bharucha-Reid, 1960] to clarify some concepts. An

extremely readable introduction to the preliminary (abstract) measure theory is [Tao, 2011].

In all cases below, Ω is an abstract space of ω points.

Definition A.1 (Field and σ-Field). A class F of ω sets is called a field if it has the following

properties:

42
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1. Ω ∈ F ,

2. if Λ ∈ F , then Λc ∈ F ,

3. if n ∈ N and if Λ1,Λ2, . . . ,Λn ∈ F , then

n⋃
1

Λj ∈ F ,
n⋂
1

Λj ∈ F

A field is called a σ-field if it has the additional property of closure under infinite unions

and intersections:

4. if Λ1,Λ2, · · · ∈ F , then
∞⋃
1

Λj ∈ F ,
∞⋂
1

Λj ∈ F

Theorem A.2 (Generated σ-field). If F0 is a class of ω sets, there is a uniquely determined

σ-field, F of ω sets with the following two properties

1. F0 ∈ F ;

2. if F1 is a σ-field of ω sets and if F0 ⊂ F1, then F ⊂ F1.

We will denote this unique σ-field as σ(F0) - the σ-field generated by F0.

In the following we shall discuss the concept of ω functions. Functions defined on various sets

of ω points allow us to define sets of ω points as constraints on these functions. Such functions

can be real or complex valued.

Definition A.3 (Measurable Space and Measure). The triplet (Ω,F , µ) is called a measure

space if F is σ-field of subsets of Ω, and if the function µ : F → [0,∞] has the properties

1. µ(∅) = 0 and

2. for any disjoint sequence (An) in F ,

µ

( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An)

.

µ is called a measure on the measurable space (Ω,F).
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Many measurable spaces allow for more than one type of measure to be defined on them. Hence

they can be used to form many different measure spaces.

Definition A.4 (Measurability). A function f : (Ω,F) → (Ω′,F ′) is called measurable with

respect to F if f−1(E′) ∈ F for all E′ ∈ F ′.

We now mention a particularly important measurable space. Let

B0 :=

{
n⋃
i=1

(ai, bi] : ai, bi ∈ [−∞,∞], a1 ≤ b1 ≤ a2 ≤ · · · ≤ bn, n ≥ 1

}
.

We call B0 the class of all finite unions of disjoint intervals on the extended reals, denoted

R̄ := R∪ [−∞,∞]. B0 is in fact a field on R and the σ-field generated by B0, denoted B = σ(B0),

is called the Borel field.

For the case of the measurable spaces (Ω,F) and (R̄,B) we have an equivalent definition of

measurable. The real-valued function X : Ω → R is measurable with respect to F if, for every

c ∈ R, the ω-set {ω : X(ω) < c} is in F . See [Kopp, 2011] for a proof of these statements. We

call a measure on measurable space (Ω,F) finite if µ(Ω) < ∞. We call a measure σ-finite if

there exists a sequence (Fn)n in F such that µ(Fn) <∞ for all n and ∪∞n Fn = Ω.

I now note a few important characteristics of measurable functions. Linear combinations of

functions measurable with respect to F are measurable with respect to F . If {Xn, n ≥ 1} is

a sequence of ω functions each measurable with respect to F , then the set of points on which

{Xn, n ≥ 1} converges, defined as

{ωX} :=
{
ω : lim

n→∞
Xn(ω) = Xω ∈ R

}
,

is in F . If the sequence {Xn, n ≥ 1} converges everywhere, then its limit is a function measurable

with respect to F . An important type of measure spaces are probability spaces, defined as

follows:

Definition A.5 (Probability space). The measure space (Ω,F , P ) is called a probability

space if P satisfies

1. P : F → [0, 1],

2. P (Ω) = 1 and
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3. for any sequence (An), (n ∈ N), in F such that n 6= m⇒ An ∩Am = ∅, we have that

P (∪∞n=1An) =
∞∑
n=1

P (An).

Important to stochastic calculus is the uniqueness of measures like the Lebesque measure. To

discuss this we need a few more definitions.

Definition A.6 (Outer Measure and µ∗-measurable). The function µ∗ : 2Ω → [0,∞] is called

an outer measure if it satisfies

1. µ(∅) = 0,

2. for any subsets A, B of Ω such that A ⊂ B, we have that µ∗(A) ≤ µ∗(B), (Monotonicity)

3. for any sequence of subsets (Ai)i, µ
∗(∪∞i=1Ai) ≤

∑∞
i=1 µ

∗(Ai). (Countably subadditive)

Let µ∗ be an outer measure. The set A ⊂ Ω is µ∗-measurable if, for each E ⊂ Ω,

µ∗(E) = µ∗(E ∩A) + µ∗(E\A)

Consider the function m : B0 → [0,∞) defined as m(∪ni=1(ai, bi]) =
∑n

i=1(bi − ai). m is a

measure on B0. Unfortunately, m is not countably additive on B, and hence not a measure on

the Borel set, B. We can, though, consider the related outer measure instead, namely

m ∗ (E) := inf

{
n∑
i=1

(bi − ai) : E ⊂ ∪∞i=1(ai, bi]

}
.

A key result is the implementation of Carathéodory’s Extension Theorem:

Theorem A.7 (Carathéodory extension). Let F0 be a field of subsets of the set Ω and let

µ : F0 → [0,∞] be a measure. Define µ∗ as

µ∗(E) = inf

{
n∑
i=1

µ(Ai) : Ai ∈ F0, E ⊂ ∪∞i=1Ai

}
,

for E ⊂ Ω. Then µ∗ and µ agree on F0, every set in F0 is µ∗-measurable and, if µ is countably

additive on F0, then µ∗ is the unique extension of µ to a measure on the σ-field F = σ(F0).

I refer you to [Kopp, 2011] for a brief outline of a proof for this theorem. The key point, though,

is that this tells us that the m∗ defined earlier is the unique extension of m on B. Now let N
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be the collection of all m∗-null sets: N := {N : m ∗ (N) = 0}. We then define L := B ∪N . L is

called the collection of Lebesque measurable sets. From here on we will write m for m∗ which

we have defined as Lebesque measure: m : L→ [0,∞].

Consider a probability space (Ω,F , P ). Let X : (Ω,F , P ) → (R,B) be a function measurable

with respect to F . Such real-valued functions from a probability space to (R,B) are called

random variables. A sequence of random variables, indexed by α, is called a stochastic process

and is written ((Xα)α∈Λ). It is called discrete if the set of indices, Λ, is countable or continuous

if Λ is uncountable (usually [0,∞) to represent time).

We then have that the pre-images X−1(E) ∈ F for all E ∈ B are well defined and we can

define the function PX : B → [0, 1] as PX(E) = P (X−1(E)). This new function is, in fact, a

probability measure on the measurable space (R,B). We can make use of our earlier remark

that measurable functions with range-space (R,B) are equally well defined by their values on

the set of all intervals of the form (−∞, x]. We use this to define the distribution function of a

probability as FPX (x) := PX((−∞, x]). We call this function the law of the random variable X,

usually written FX(x) = PX((−∞, x]). An equivalent way of describing random variables is by

their characteristic functions. Every distribution function has a unique characteristic function

defined as

φX(λ) = E [exp(iλX)] .

If the distribution function is differentiable, it’s derivative is called the probability density func-

tion. In these cases, the characteristic function is in effect the Fourier transform of the density

function. Working with characteristic functions is useful because, in several contexts, it allows

an easy way to calculate certain quantities, such as moments of the random variable1.

Another useful concept is that of a σ-field generated by a random variable. We write σ(X) :=

{X−1(B) : B ∈ B}. This can be extended to The σ-field generated by a process, defined as the

minimal σ-field which contains all the σ-fields generated by the Xαs.

Product measures are the extension of measures to spaces which are the Cartesian product of

two (or more) spaces. Let (Ω1,F1) and (Ω2,F2) be two measurable spaces. The product σ−field

F = F1 × F2 on the Cartesian product Ω = Ω1 × Ω2 is defined as F := σ(R), where R =

{F1 × F2 : F1 ∈ F1, F2 ∈ F2}. Another way to think of this is in terms of projection maps. If

ρi : Ω→ Ωi (i = 1, 2) is a projection map such that ρi(ω1, ω2) = ωi, we can equivalently define F
1Note, the characteristic function is not the same thing as the moment generating function! The former always

exists whereas the latter may not. A discussion of this is unnecessary for our scope.
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as the smallest σ-field over which ρ1 and ρ2 are both measurable. Many of our earlier mentioned

results and definitions extend naturally to the product measures so their reproduction will be

omitted for brevity. We now return to our conventional definition of Ω.

We can now begin to construct integrals over arbitrary spaces with respect to some σ-finite

measure µ. First, we define indicator functions and simple functions.

Definition A.8 (Indicator Function). Let (Ω,F , µ) be a fixed σ-finite measurable space. For

A ∈ F , we define the indicator function 1A : Ω→ {0, 1} as

1A(x) :=


1 if x ∈ A,

0 if x /∈ A.

Definition A.9 (Simple Function). Let (Ω,F) be a measurable space. We call the function

φ : Ω → R a simple function if it has a finite range: i.e. it takes on only a finite number of

values in R. Suppose these n distinct values are {a1, a2, . . . , an}, then we can partition Ω into

a finite number of disjoint sets, labelled Ai, in F , defined by Ai = φ−1({ai}) = {ω : φ(ω) = ai},

for i = 1, . . . , n. Moreover, we can represent φ(ω) =
∑n

i=1 ai1Ai(ω).

Note that the set of all simple functions (for a given measurable space) forms a vector space, de-

noted S(F). It is intuitively quite obvious that we can approximate (to arbitrary precision) any

measurable function with a series of simple functions. To be particular, consider the following

proposition:

Proposition A.10. Let (Ω,F) be a measurable space and let f : Ω→ [0,∞) be measurable with

respect to F . Define the sequences of sets Ak = f−1([k−1
2n ,

k
2n )) and Bk = f−1((k,∞)). Then

the sequence of simple functions (sn) for

sn =

n2n∑
k=1

k − 1

2n
1Ak + n1Bn

converges pointwise to f .

We can now begin to define integrals of positive measurable functions with respect to some

measure.
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Definition A.11 (µ-integral). Let (Ω,F , µ) be a fixed σ-finite measure space. For any A ∈ F

define the µ-integral of its indicator, 1A as

∫
Ω

1A(ω)µ(dω) =

∫
Ω

1Adµ := µ(A).

Note the notation of the integral. The integral is over the space Ω and the indicator function is

a function of elements of this space. The value of the integral, though, depends principally on

the measure, µ, and hence the second, conventional notation. By linearity, we can extend this

definition as follows: let φ =
∑n

i=1 ai1Ai , where ai > 0 and (Ai)i≤n ∈ F are pairwise disjoint.

Then we have that ∫
Ω
φ(ω)µ(dω) =

n∑
i=1

aiµ(Ai).

For the integral of a positive real function with respect to the Lebesque measure m, this becomes

more evident: we write
∫∞
−∞ f(x)m(dx). For example

∫∞
−∞ 1Qm(dx) = 1m(Q) + 0m(R/Q) = 0.

Note that we can restrict our integral to an arbitrary subset E ∈ F by simply writing
∫
E fdµ =∫

Ω(f · 1E)dµ. We want to extend the definition of µ-integrals from the the space of simple

functions (measurable on F) to the space of all functions which are F-measurable. We use

our earlier statement that all measurable functions can be written as the limit of a sequence of

simple functions. So, if we write

Y (f) =

{∫
Ω
φdµ : φ ∈ S(F) : 0 ≤ φ ≤ f

}
,

we can then define ∫
Ω
fdµ := sup(Y ).

The Monotone Convergence Theorem equips us with the stability of these integrals for point-

wise convergent sequences of functions. We state it as follows:

Theorem A.12 (Monotone Convergence). Let (fn)n≥1 be a sequence of positive measurable

functions which converges pointwise to f on E ∈ F . Then

∫
E
fndµ =

∫
E
fdµ as n→∞.

We emphasise the restriction to positive measurable functions because we must avoid integrals

which evaluate to ∞−∞. So we restrict ourselves to the space L1(Ω,F , µ) := {f :
∫

Ω |f |dµ <
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∞}. We call f ∈ L1 µ-integrable. Note this is a slightly stronger requirement than measura-

bility. A function may be measurable but not integrable with respect to µ.

A.1 Stochastic Integrals

The earlier construction of integration of measurable functions with respect to a measure will

now help us construct a similar concept for the integration with respect to (continuous) stochas-

tic processes. In defining µ-integrability, we required the notion of point-wise convergence, both

of simple functions and then sequences of positive-measurable functions. A similar construction

must now occur, where we consider sequences of sub-σ-fields. A sub-σ-field is a σ-field contained

by the σ-field generated by the whole possible state space, Ω. A natural and useful example is

taken for stochastic processes. Suppose we have the stochastic process (Xα)α∈N. The σ-field

generated by the sub-process (Xα)α≤3 is a sub-σ-field of the σ-field generated by the whole

process. This leads naturally to the definition of filtrations. First, though, we must define the

concept of conditional expectation. We assume the reader is comfortable with the expectation

of a random variable: for probability space (Ω,F , P ), the expectation value of X : Ω → R is

denoted E[X] :=
∫

ΩXdP .

To define conditional expectation, we need to account for the fact that different random variables

in L1 could be indistinguishable almost surely in P . To avoid this, we work in the quotient

space attained by identifying random variables into equivalence classes when they agree almost

surely on P . This gives us Banach space structure. Let us fix a probability space (Ω,F , P ). In a

natural re-use of the notation used earlier2, we let Lp = {X : Ω→ R : E[|X|p] <∞}, for p ≥ 1.

For a given value of p, || · ||p : X → (E[|X|p])1/p defines a norm so we can define equivalence

classes as X ∼ Y if and only if X = Y almost surely in P , or (equivalently) ||X − Y ||p = 0. By

identifying random variables which are in the same equivalence class we form the quotient space,

denoted Lp(Ω), or Lp. This is a Banach space, which is important for the following definition

in which p = 1.

Definition A.13 (Conditional Expectation). If X ∈ L1(Ω,F , P ) and G is a sub-σ-field of F ,

then the conditional expectation of X given G is the G-measurable random variable E[X|G],

such that
∫
G E[X|G]dP =

∫
G XdP for all G ∈ G.

Definition A.14 (Filtrations and Martingales).

2Recall we used L1 to denote the space of µ-integrable functions. Here we are specifying that µ must be a
probability measure and we are considering the more general case of the p-norm.
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• Let F = (Fi)i≥0 be an increasing sequence of sub-σ-fields. We call F a filtration. The

sequence of random variables (Xα)α≥0 is adapted to F if, for each n, Xn is Fn measurable.

(Ω,F ,F, P ) is called a filtered space.

• The adapted sequence (Xn,Fn) is called a (F, P )-martingale if each Xn is integrable and

E[Xn|Fn−1] = Xn−1 almost surely in P for each n ≥ 1.

We now bring several of these concepts together. A naturally common stochastic process of

interest is the continuous process X = (Xt)t∈T, where Xt : Ω → R and [0,∞) =: T represents

time. Similarly, we can see this as a random variable on a product space X : T × Ω → R.

This map is measurable if X−1(B) ∈ σ(BT × F) for every Borel set B. BT denotes B ∩ T.

We will also be working in the normed space L2 for the following reasons. As will be evident

later, we are often interested in how well two random variable “agree”. Suppose we want to

characterise how “close” two random variables (X and Y )are on some sub-σ-field. Calculating

||X − Y ||22 = E
[
|X − Y |2

]
= E[X2 − 2XY − Y 2] amounts to calculating variances of X and

Y and Hölder’s inequality (see [Kopp, 2011, p. 50]) tells us that E[XY ] ≤ ||X||2||Y ||2, where

equality holds if X and Y are independent. Minimisation in the L2-norm is what statisticians

called the “least-squares” fit and is optimal for processes with non-zero finite variances.

We now define a very important example of such a process.

Definition A.15 (Wiener Process). Let (Ω,F , P ) be a probability space. The stochastic pro-

cess B : T× Ω→ R is called a Wiener process if:

1. B(0, ω) = 0 almost surely in P ,

2. for 0 ≤ s < t <∞, the random variable ∆B := B(t, ω)−B(s, ω) is normally distributed,

with mean 0 and variance (t− s),

3. for m ∈ N and the disjoint intervals 0 ≤ t1 < t2 < . . . < tm, the increments ∆Bi =

B(ti+1, ω)−B(ti, ω) are independent,

4. the paths t→ B(t, ω) are continuous almost everywhere in P .

The term Brownian Motion is often used for the Wiener process. Here we make a slight distinc-

tion. It is of little use considering the process B itself. Most often we make use of the convention

that B(0, ω) = 0 a consider the random variable Bt(ω) := B(t, ω) − B(0, ω). We will call this
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Brownian Motion (BM). Bt is then normally distributed around 0 with variance t. The Wiener

process/Brownian motion is a fundamental and thoroughly studied construction. A discussion

of all its known properties would be a chapter on its own. We mention it here because it is used

in constructing the canonical stochastic integral, the Itô integral. To do so though, it is useful

to note some properties of BM. The characteristic function of BM can be calculated as follows

φBt(λ) =E[exp(iλBt)] =

∫ ∞
−∞

exp(iλx)exp(−x
2

2t
)dx

=exp(− t
2
λ2). (A.1)

This is useful, as we can calculate higher-order moments of BM using the relation inE[Xn] =

dn

dλnφX(λ)|λ=0. In particular, we note that

E[B4
t ] =

d4

dλ4
exp(− t

2
λ2)|λ=0 = 3t2.

Similarly to how we built integrals with respect to measures in terms of simple functions, we

use the notion of a simple F-adapted process to “build” integrals. We define these as follows:

Definition A.16. Let h be an F-adapted process on [0, T ]×Ω. We say that h is simple if, for

some partition {0 = t0 < t1 < t2 < . . . < tn = T} and for the Fti-measurable random variables

(hi)i<n, we have that ht satisfies

ht(ω) =
n−1∑
i=0

hi(ω) · 1(ti,ti+1](t) for 0 ≤ t ≤ T, ω ∈ Ω.

Here, 1(ti,ti+1](t) is a step function, evaluating to 1 only on the interval (ti, ti+1]. For now, we

will restrict ourselves to the class of finite square integrable (simple) processes. We will denote

this vector space of simple processes in L2 as

H2
[0,T ] := {h : h is simple and hi ∈ L2(Fti) for all i ≤ n.}

We can then define Itô integrals of such processes.

Definition A.17 (Itô Integral of a simple process). Let h be a simple process where hi ∈ L2(Fti)

for all i ≤ n. The Itô integral of h, denoted
∫ T

0 hsdBs, is defined as

∫ T

0
hsdBs :=

n−1∑
i=0

hi · (Bti+1 −Bti).
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Earlier we extended our definition of the µ-integral from positive simple functions on F to all

measurable functions on F . We would like to extend this definition similarly, to include a more

general class of measurable processes. For clarity we define the vector space:

M2
[0,T ] :=

{
f : f is F-adapted,E

[∫ T

0
f2
t dt

]
<∞

}
.

Note we maintain the convention of denoting the dependence on the σ-field T as a subscript. It

is important to remember that this too is an argument of f as f acts on a product space. The

spaceM2
[0,T ] is equipped with a natural norm due to the fact that it’s elements are L2-processes.

We denote and define this norm as

||f ||M2
[0,T ]

:=

√
E
[∫ T

0
f2
t dt

]
,

which, of course, applies to H2
[0,T ] as well. We will not explicitly prove it here, but it is perhaps

not surprising to know that, for any process inM2
[0,T ], there exists a sequence of simple processes

in H2
[0,T ] which converges to f in the M2

[0,T ]-norm. This means M2
[0,T ] is the closure of H2

[0,T ]

in the M2
[0,T ]-norm. We keep this in mind and note two important results for Itô integrals of

simple processes:

Theorem A.18 (Itô isometry).

1. E
[∫ T

0 htdBt

]
= 0,

2. E
[(∫ T

0 htdBt

)2
]

= E
[∫ T

0 h2
tdt
]

- the Itô isometry.

The Itô isometry tells us something important. Note that on the left hand side, we have the

square of the || · ||2-norm of the Itô integral. On the right hand side we have the square of the

|| · ||M2
[0,T ]

-norm of the simple process in H2
[0,T ]. The continuity of this map allows us to define

the Itô integral for processes in M2
[0,T ] as the limit of the integral of the sequence of processes

in H2
[0,T ] which converge to f in the M2

[0,T ]-norm.

Definition A.19 (Itô integral). Let f ∈M2
[0,T ], and let h ∈ H2

[0,T ] satisfy

lim
n→∞

||hn − f ||M2
[0,T ]

= 0,
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everywhere in T . Then we define

∫ T

0
ftdBt := lim

n→∞

∫ T

0
(hn)tdBt.

The above limit is well defined and, what’s more, it can be shown that, for each f ∈M2
[0,T ] we

can construct the appropriate sequence of simple processes using indicator functions.

The Itô isometry is even more useful though. It allows us to extend the results in theorem A.18

to functions in M2
[0,T ]:

Theorem A.20. For f ∈M2
[0,T ], we have that:

E
[∫ T

0 ftdBt

]
= 0,

E
[(∫ T

0 ftdBt

)2
]

= E
[∫ T

0 h2
tdt
]
.

We use this to make an interesting observation. Brownian Motion (for t ∈ [0, T ]) is inM2
[0,T ]. So

what is
∫ t

0 BsdBs? We can now calculate this as follows. We partition [0, t] into n− 1 intervals

where t0 = 0, tn = s. Consider the sequence of simple processes hn :=
∑n−1

j=0 Btj
(
Btj+1 −Btj

)
.3

Using the identity a(b− a) = 1
2

(
(b2 − a2)− (b− a)2)

)
, we write

hn =
1

2

n−1∑
j=0

(
(B2

tj+1
−B2

tj )− (Btj+1 −Btj )2
)
.

We can take the first term outside of the sum, since
∑n

i=0(ai+1− ai) = an+1− a0. We also have

by convention that B0 = 0, so

hn =
1

2

B2
tn −

n−1∑
j=0

(Btj+1 −Btj )2

 .

The term in the summation is the variance of the increment Btj+1 − Btj . As stated in the

definition of the Wiener process these increments are stationary and independent. Furthermore,

the sum of all the variances is simply the variance of the overall process. So we have

n−1∑
j=0

(Btj+1 −Btj )2 =

n−1∑
j=0

(tj+1 − tj) = tn.

3Note that the values of each tj are in fact n dependent, since for different partitions the edges of the partitions
will differ. This is a subtle detail so the notation has been omitted but the reader should be aware.
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In the limit n → ∞, hn converges to 1
2

(
B2
s − s

)
in the L2-norm, so by theorem A.19, we have

the result ∫ T

0
BsdBs =

1

2
(B2

T − T ),

a new stochastic process! This result is the basis of the Itô calculus, a stochastic calculus. The

Itô integral does not obey the same “rules” as the Riemann or Lebesque integrals. The reason

for this difference lies in the integrator, dBs which has “non-vanishing quadratic variation”. Itô

processes are stochastic processes which can be written as the (finite) sum of Lebesque and Itô

integrals, i.e of the form

Xt = X0 +

∫ t

0
Ksds+

∫ t

0
HsdBs.

It is from these rules and structures of Itô calculus that we can manipulate the compound

Poisson processes and other stochastic processes which appear in the following chapter.

Note that is has become a common convention to write equations like that above in derivative

form, namely:

Ẋt = Kst+Ht
dBs
ds
|s=t. (A.2)

This expression is not necessarily well defined - we do not have that dBs is differentiable with

respect to t. We only know that increments of B are normally distributed around 0. The

convention is widespread though now and worth noting.
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Markov Processes

In analysing spiking network models, it is extremely useful to have some means of approximating

distributions of inter spike intervals. This amounts to solving the “first exit time” problem for

a stochastic process. To this end, I present below the derivation outlined in [Tuckwell, 1988].

This analysis draws on that of Goldstein and Mandelbrot (1964).

We begin by considering a simple case of a “birth-and-death” process. Consider the function

V (t) := NE(t)−NI(t)

where NE(t) and NI are independent Poisson processes with rates λE and λI respectively. We

could say process V (t) has received NE(t) “excitatory” and NI “inhibitory” inputs in time

interval [0, t).

Note that in the more thorough notation for stochastic processes used in the previous chapter,

V would be written as a continuous sequence of random functions Vt(ω) or as a random variable

on a product space: V (t, ω). In this chapter, the state-space will be known to be the real line.

Since (by definition) we do not know what Vt looks like, we can at most make statements about

probabilistic measures of pre-images of V - i.e. the likelhood that Vt is in some element of the

σ-field of the state space (in this case, the Borel field). For this reason, the dependence on the

state space is depressed and we write random variables as maps from the index space T = [0,∞)

to the real line.

The process V is a Markov process: the probability of the random variable being in state y

at time t2 is completely defined by our knowledge that it is in state x at time t1 < t2. We

55
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do not need to know what trajectory it took before then to get to state x. If such a process

is continuous in time and discrete in space it is called a discontinuous Markov process. Jumps

due to new instances (“arrivals”) on either of these processes are of magnitude one. Hence

NE and NI are “jump” processes, where different jumps are statistically independent and the

probability distributions of NE and NI are Poisson distributions.

Assuming such a process begins at V (0) = 0, we would like to know some distribution of the

expected value of V (t) for t > 0. Consider what would happen in time interval (t, t+ ∆t]: the

probability that NE(t) increases is λE∆t and similarly for NI . The various times at which V (t)

changes is thus a Poisson process with mean rate λ = λE + λI . We seek

pm(t) = Pr{V (t) = m|V (0) = 0},

where m ∈ Z. This is the conditional probability that V (t) = m given that V (0) = 0, known as

the transition probability. Our derivation thus far considers all trajectories via which V (t) may

attain m. In particular, it may have taken n ≥ m steps to get there. Furthermore, suppose nE

of these jumps were excitatory (+1) and nI inhibitory (-1). With this in mind, we can write

that, after n jumps,

Pr(V = m|V (0) = 0) =

(
n

n+m
2

)
p(m+n)/2q(n−m)/2,

where p = λE
λ , q = λI

λ and n = nE + nI , m = nE − nI .

By the law of total probability, we can multiply this by the probability of n jumps occurring in

the same time interval, (0,t]: e−λt(λt)n

n! . Using n = m+ 2nI , we get

pm(t) = e−λt
∞∑

nI=0

(λt)m+2nI

(m+ 2nI)!

(
m+ 2nI
m+ nI

)
pm+nIqnI (B.1)

We we express this more succinctly using the modified Bessel function, defined as

Iz(x) :=

∞∑
k=0

1

k!Γ(k + z + 1)

(x
2

)2k+z
,

where Γ(k) = (k − 1)! is the Gamma function. We obtain

pm(t) =

(
λE
λI

)m/2
e−λtIm(2t

√
λEλI). (B.2)
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B.1 Thresholds

Consider a trajectory of the process V which we know began at V (0) = 0 and ends at V (t) =

m > θ. We know that V must have crossed θ > 0 at some point and, in particular, done so for

the first time at some t′ < t. We define the distribution of first-passage times:

fθ(t) := Pr{V (t) = θ|V (0) = 0 & V (t′) < θ ∀ t′ < t}.

Note that this Markov processes is temporally homogeneous: i.e it only depends on differences

in time, not absolute time. We can then integrate over all such possible paths1 (i.e. crossing θ

at all possible t′s) and write

pm(t) =

∫ t

0
fθ(t

′)pm−θ(t− t′)dt′ (B.3)

In solving for fθ(t), we denote the Laplace transform of a function g(t) as L(g(t))(s) = gL(s).

Under the transform, equation (B.3) can be rearranged into

fθ,L(s) =
pm,L(s)

pm−θ,L(s)
.

Implementing our earlier expression for pm(t) (equation (B.1)) and the known Laplace transform:

L(e−λt(λt)k = λk(s+ λ)−(k+1)k!,

we obtain

fθ,L(s) =
λθpθ

(s+ λ)θ

∑∞
nI=0

(
λpq

(s+λ)2

)nI (m+2nI
m+nI

)
∑∞

nI=0

(
λpq

(s+λ)2

)nI (m−θ+2nI
m−θ+nI

) ,
the inverse Laplace transform of which is

fθ(t) = θ

(
λE
λI

)θ/2 e−(λE+λI)t

t
Iθ(2t

√
λEλI), t > 0, (B.4)

where Iθ is again the modified the Bessel function.

This construction shows that when we consider a simplistic model neuron with no internal

dynamics, only a threshold and Poissonian inputs, it is possible to derive a closed expression for

the distribution of firing times. We now look at an extension to these “random walk” processes

1The Chapman-Kolmogorov identity
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in which the random variable representing membrane potential is also effected by self-dependant

dynamics.

B.2 Diffusion and Jump-Diffusion Processes

The discrete nature of the above model is obviously quite insufficient in representing the mem-

brane potential of even a simple integrate and fire neuron. To this end we look to the work of

Stein (1965) who studied models of diffusive Markov processes. Let X(t) be a random variable

of a Markov process, parameterised by continuous time. Suppose at time s, X(s) has the value

x. The Markov process random variable, X(t), is fully characterised by the transition probability

distribution function

P (y, t|x, s) = Pr{X(t) ≤ y|X(s) = x}

Because these processes are continuous in t, we can also characterise them through the infinites-

imal generator (A), which describes transitions of the process over infinitesimal time intervals.

For a function f of X which is also continuous with compact support, we define

(Af)(x, t) := lim
∆t→0+

E[f(X(t+ ∆t)− f(X(t))|X(t) = x]

∆t

If the diffusion process concerned is temporally homogeneous, we can simply write (Af)(x) =

(Af)(x, t), since the infinitesimal transition probability only depends on the current position

and such transitional probabilities do not change in time.

Diffusion processes are continuous time Markov processes with continuous state paths. Their

infinitesimal generators can thus be written using their infinitesimal mean (α(x)) and variance

(β2(x)):

(Af)(x) = α(x)
df

dx
+
β2(x)

2

d2f

dx2
, (B.5)

where

α(x) = lim
∆t→0+

E[X(t+ ∆t)−X(t)|X(t) = x]

∆t

β2(x) = lim
∆t→0+

Var[X(t+ ∆t)−X(t)|X(t) = x]

∆t
(B.6)
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If the variance of the Markov process is bounded over finite intervals in T then it can then be

described by the corresponding stochastic integral or differential equations:

X(t) = X0 +

∫ t

0
α(X(t′))dt′ +

∫ t

0
β(X(t′))dW (t′),

where X(0) = X0 is the initial condition, the first integral is a Riemann integral and the second

is a stochastic integral with respect to the standard Wiener process, W .

Now we can begin to consider jump-diffusion processes ( [Tuckwell, 1988, p. 147]). Consider

a random Markov process, X(t), that experiences jumps of various magnitudes. Suppose

all such magnitudes are in the set A. Let v(t, A) be the number of jumps of X up until

time t which have magnitudes in A2. If the Ai’s are disjoint sets (for i = 1, 2, 3..., n) then

v(t, A1), v(t, A2), ..., v(t, An) are mutually independent processes. Integrating over all jump am-

plitudes regains the original process:

X(t) =

∫
R
uv(t, du). (B.7)

If this process is in turn the input to a Markov diffusion process, we can write down the following

stochastic integral equation for the resultant Markov process:

X(t) = X(0) +

∫ t

0
α(X(t′))dt+ β(X(t′))dW (t′) +

∫ t

0

∫
R
γ(X(t′), u)v(dt′, du). (B.8)

More often though (and somewhat less rigorously) the differential form of this equation is written

down:

dX = α(X)dt+ β(X)dW +

∫
R
γ(X,u)v(dt, du). (B.9)

γ(X,u) is a real-valued measurable function on the compound measure space (R,B)× (R,B). It

is essentially a scaling function, as the effects of jumps may be dependent on the current state.

More usefully said, γ(X,u) is a “weighting” coefficient which describes the magnitude of the

effect of jumps of different sizes given the state of the process at the moment of that jump’s

arrival.

Now consider the restricted case where for each fixed A, v(t, A) is a temporally homogeneous

Poisson process with mean rate Π(A) - the rate being A dependant. Π is in fact a rate measure

on the σ-field of all A’s. We then have that E[v(t, A)] = tΠ(A). The unique rate density is

2In relation to appendix A, v is a measure on a compound measure space. In particular, it is measure over
the σ-field generated by the set of all subsets of jump sizes - all possible As.
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defined as π(u), where

Π(du) = π(u)du.

and the process has a total jump rate of

Λ =

∫
R
π(u)du.

For this scenario, the process, X(t) =
∫
R uv(t, du), is called a compound Poisson process. In

this setting, it can be shown that the infinitesimal generator for the resultant Jump-Diffusion

process is

(Af)(x) = α(x)
df

dx
+
β2(x)

2

d2f

dx2
+

∫
R
f(x+ γ(x, u))Π(du)− Λf (B.10)

As a simple example, we take a Brownian motion with drift as our drift-diffusion process (i.e.

constant α and β) with a random walk like that mentioned earlier as our jump process. The

jumps have magnitudes 1 and −1 at rates λ+ and λ− respectively. This has can be written in

the stochastic integral form as

X(t) = X(0) + αt+ βW (t) +N+(t)−N−(t),

where N+(t) and N−(t) are the values of the Poisson processes at time t. We want to know

what the infinitesimal generator of such a process is, so we note that

π(u) =λ+δ(u− 1) + λ−δ(u+ 1) (B.11)

⇒ Λ =

∫
R
π(u)du = λ+ + λ−. (B.12)

γ is simple: independent of X, as the size of jumps is independent of the state of the process and

taking magnitude of the jumps themselves. Hence γ(X,u) = u. The associated infinitesimal

generator is then

(Af)(x) = α
df

dx
+
β2

2

d2f

dx2
+ (λ+f(x+ 1) + λ−f(x− 1))− (λ+ + λ−)f(x). (B.13)
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B.3 First exit times

Consider such a compound Poisson process on the real line with initial condition X(0) = x ∈

[a, b]. The random variable

Tab(x) := inf{t|X(t) /∈ (a, b), X(0) = x}

will have some distribution function, say

Fab(x, t) := Pr{Tab(x) ≤ t}.

Taking the derivative of this distribution function with respect to time, we can define a proba-

bility density function of the first exit time from (a, b):

∫ t

−∞
fab(x, t

′)dt′ := Fab(x, t),

fab(x, t) =
∂Fab
∂t

(x, t).

[Tuckwell, 1976] showed that, for a diffusion process, this density function obeys

∂fab
∂t

(x, t) = (Afab)(x, t), for x ∈ (a, b), t > 0,

with boundary conditions

fab(x, 0) = 0, x ∈ (a, b)

fab(x, t) = δ(t), x /∈ (a, b).

The nth moment of the first exit times (about the origin) is defined as

µn,ab(x) =

∫ ∞
0

tnfab(x, t)dt, for n ∈ Z+.

and, as shown in [Darling and Siegert, 1953] and [Tuckwell, 1976], higher-order moments obey

the recurrence relation

(Aµn,ab)(x) = −nµn−1,ab(x). (B.14)

For the particular case of first exit times from the interval (−∞, b) we consider the limit a→ −∞.
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B.4 Stein’s Model

[Stein, 1965,Stein, 1967] considered the random variable of a single neuron’s membrane poten-

tial, X(t), for t ≥ 0. For subthreshold dynamics (X < θ), the variable would change by jumps

due to inputs of, potentially, various magnitudes, such as in equation (B.7). At the same time,

the membrane potential will always tend to decay back to its resting value. Hence this variable

obeys the stochastic differential equation

dX = −Xdt+

∫
R
uv(dt, du), for t > 0, X < θ.

He then considered the scenario where the neuron receives input form only two sources, one

causing positive jumps in X of size aE and one causing negative jumps in X of size aI . We

could express this via the rate density function: equation (B.11). By equation (B.10), we can

now calculate the infinitesimal generator of this process, namely

(Af)(x) = −x df
dx

+ λEf(x+ aE) + λIf(x− aI)− (λE + λI)f(x). (B.15)

From the recursion relation between moments of the first-exit times of Markov processes, equa-

tion (B.14), we have the following relationship between moments of the first-exit times of this

process

− nµn−1,ab = −x
dµn,ab
dx

+ λEµn,ab(x+ aE) + λIµn,ab(x− aI)− (λE + λI)µn,ab(x). (B.16)

This system can be solved for a few specific cases (e.g. λI = 0, see [Tuckwell, 1988]). In the case

of the I-&-F neuron, we would need to consider solutions with boundary conditions at a→ −∞.

This was the case for equation (2.16).
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The Diffusive Limit

The diffusive limit in the context of a network of I-&-F neurons refers to two reasonable ap-

proximations in the limit of large number of inputs of small amplitude. The first is the central

limit theorem: that a random variable consisting of sampling a large number of independent

(Poisson or other) random processes will tend to follow a Gaussian distribution. The second is

that a random walk (or stochastic process) consisting of an extremely large number of extremely

small discrete steps is an essentially continuous process. Informally speaking, diffusion processes

(or rather, Itō diffusion processes) are stochastic processes where the (random) state variable is

a continuous function of the time parameter.

C.1 Diffusive limit of a spiking network

Consider the case of a neuron receiving randomly distributed, discrete spikes on dendritic inputs.

Arrival of each spike causes a pulse of input current at the soma of finite size. Once such an

input current arrives, the total current decays back to zero at a characteristic rate, τ ′. The total

input current to such a neuron (at the soma) would thus be the stochastic process described by

τ ′
dI

dt
= −I(t) + ∆I

N∑
j=1

J ′jδ(t− tkj − dj), (C.1)

where tkj is the kth spike time of the jth afferent neuron and dj is the “transmission delay” on

the axon and dendrites. J ′j is a dimensionless magnitude of input from afferent neuron j and
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would depend on strength of the synapse and proximity to the soma. ∆I is a constant scaling

parameter.

We can rewrite this in approximate difference form

I(t+ ∆t)− I(t) ≈ −∆t
I(t)

τ ′
+ ∆t

∆I

τ ′

∑
j

J ′j∆Nj(∆t), (C.2)

where ∆t is a small enough interval of time such that I(t + ∆t) − I(t) can be expected to be

very small. ∆Nj(∆t) is the number of inputs arriving on connection j in the interval ∆t. This

is obviously a strongly fluctuating quantity, but in the case that the afferent sources are Poisson

processes of fixed rate, we can write

E[∆Nj(∆t))] = νj∆t,

where E denotes the expected value and νj is the rate of jth afferent Poisson process.

Averaging equation (C.2) over a small time interval δt for δt < ∆t, to smooth out fluctuations,

we then divide by ∆t:

Ī(t+ ∆t)− Ī(t)

∆t
= − Ī(t)

τ ′
+ ∆t

∆I

τ ′

N∑
j

J ′jνj(t),

which, if ∆t << τ ′, we can approximate as

τ ′
dĪ

dt
(t) = −Ī(t) + ∆t∆I

N∑
j

J ′jνj(t). (C.3)

The argument above depends critically on the separation of time scales. For arguments as to

its validity for a model of cortical conditions, see Frolov [Frolov and Medvedev, 1986] and Amit

and Tsodyks [Amit and Tsodyks, 1991]. In the main text, the over bar notation to indicate the

infinitesimal averaging of I is dropped. In moving to the Brunel model and hence equation (1.4),

we again restrict ourselves to the case that τ ′ << τ , so that, for the purposes of timescales in

equation (1.3), equation (C.3) can be written

Ī(t) = ∆t∆I
N∑
j

J ′jνj(t). (C.4)
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Equation (1.4) is just such a case, with scaling parameter Jj := R∆IJ ′j and ∆t→ τ . The input

to each neuron can thus be written as a sum of scaled Poisson processes with rates νj .

C.2 Gaussian approximation to sum of Poisson processes

Consider N independent Poisson processes with rates (and hence variances) λi. If we consider

E[n(τ)], the expected number of total instances on all these processes in time interval (t, t+ τ ],

we have E[n(τ)]= (
∑N

i=1 λi)τ . Similarly, the variance in the resultant compound Poisson process

is Var[n(τ)]=(
∑N

i=1 λi)τ . Let
∑N

i=1 λi =: λ. We can now consider the case when, although each

process has a fairly low rate (λi < 10 Hz), there are very many processes (N →∞) and so λ is

large. Let x := λ(1 + δ) where |δ| << 1. The probability of x occurrences in a unit time is then

P (λ(1 + δ)) =
λλ(1+δ)e−λ

√
2πe−λ(1+δ)[λ(1 + δ)]λ(1+δ)+ 1

2

=
eλδ(1 + δ)−λ(1+δ)− 1

2

√
2πλ

.

Note that ln[(1 + δ)λ(1+δ)+ 1
2 ] = (λ(1 + δ) + 1

2)ln[1 + δ] and ln[1 + δ] ≈ δ − δ2/2 + O(δ3). Hence

P (λ(1 + δ)) ≈ e−λδ
2/2

√
2πλ

,

and substituting back for δ = (x− λ)/λ,

P (x) ≈ e−(x−λ)2/(2λ)

√
2πλ

,

so, x is normally distributed with mean λ and variance λ. Note that, by it’s above definition, x

is a fluctuation from the mean, λ. Hence it is these fluctuations which are normally distributed

and we can describe an input consisting of these N independent processes as λ(t) +
√
λ(t)η(t),

where η(t) is a normally distributed white noise process with zero mean and unit variance.

Note that if the jumps or impulses on process i are scaled by magnitude ai, we would have

E[n(τ)]=(
∑N

i=1 aiλi)τ and Var[n(τ)]=(
∑N

i=1 a
2
iλi)τ .
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Derivation of the Fokker-Planck

equation

There are various routes to deriving the conventional Fokker-Planck equation. The earliest

was described by Andrei Kolmogorov in his seminal “On Analytical Methods in the Theory of

Probability”. Below I follow the simple argument given in [Hottovy, 2011] but, for more technical

treatments, I refer the reader to [Bharucha-Reid, 1960,Doob, 1953,Risken, 1989].

Consider a Markov (diffusion) process X(t) with probability density p(x, t) := p(x(t)). Since

this process is Markov, it obeys the Chapman-Kolmogorov equation [Bharucha-Reid, 1960]:

p(x(t3) = x3|x(t1) = x1) =

∫
p(x(t3) = x3|x(t2) = x2)p(x(t2) = x2|x(t1) = x1)dx2, (D.1)

for any t3 > t2 > t1. This is simply implementing conditional probability and integrating over

all possible intermediate steps from x1 to x3. Consider the evolution of the process from some

invariant initial point, X(0) = X. We consider the integral

I =

∫ ∞
−∞

f(Y )
∂

∂t
p(Y, t|X)dY, (D.2)

where f(Y ) is a smooth function with compact support. The time derivative of p is then well

defined as the limit

lim
∆t→0

p(Y, t+ ∆t)|X)− p(Y, t|X)

∆t
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which can be substituted into the integral. We implement the Chapman-Kolmogorov equation,

using Z as the intermediate step. Equation (D.2) is then

I = lim
∆t→0

1

∆t

(∫ ∞
−∞

f(Y )

∫ ∞
−∞

p(Y, t+ ∆t|Z, t+
∆t

2
)p(Z, t+

∆t

2
|X)dZdY −

∫ ∞
−∞

f(Y )p(Y, t|X)dY

)
.

The second term is now solely a function of X and t, as Y is being integrated out. We can then

just as well perform this integral with respect to Z. We can also re-order the integrals in the

first term of the above expression, integrating with respect to Y first, and then Z, obtaining

= lim
∆t→0

1

∆t

(∫ ∞
−∞

p(Z, t+
∆t

2
|X)

∫ ∞
−∞

p(Y, t+ ∆t|Z, t+
∆t

2
)f(Y )dY dZ −

∫ ∞
−∞

f(Z)p(Z, t|X)dZ

)

We now make the reasonable approximation that p(Z, t + ∆t
2 |X) ≈ p(Z, t|X), which will be

increasingly accurate in the limit, and apply this to the first term. This gives us the approximate

expression where the two terms share a common factor. We also make use of the fact that the

integral of any probability over the real line is 1, hence f(Z) =
∫∞
−∞ p(Y, t|Z, t + ∆t

2 )f(Z)dY .

Substituting this into term two for f(Z), we obtain

I ≈ lim
∆t→0

1

∆t

(∫ ∞
−∞

p(Z, t|X)

∫ ∞
−∞

p(Y, t+ ∆t|Z, t+
∆t

2
)(f(Y )− f(Z))dY dZ

)
.

f , being sufficiently smooth, can be expanded around Z, namely f(Y ) = f(Z)+
∑∞

n=1 f
(n)(Z) (Y−Z)n

n! .

Substituting this gives

I ≈ lim
∆t→0

1

∆t

(∫ ∞
−∞

p(Z, t|X)

∫ ∞
−∞

p(Y, t+ ∆t|Z, t+
∆t

2
)

∞∑
n=1

f (n)(Z)
(Y − Z)n

n!
dY dZ

)
.

Defining the nth-order function

D(n)(Z, t) := lim
∆t→0

1

∆tn!

∫ ∞
−∞

(Y − Z)np(Y, t+ ∆t|Z, t+
∆t

2
)dY,

we can write our original integral (now ignoring the approximation) as:

∫ ∞
−∞

f(Y )
∂p(Y, t|X)

∂t
dY =

∫ ∞
−∞

p(Z, t|X)

∞∑
n=1

f (n)(Z)D(n)(Z, t)dZ (D.3)
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Applying integration by parts n times to the right hand side, we have

∫ ∞
−∞

f(Y )
∂p(Y, t|X)

∂t
dY =

∞∑
n=1

 n∑
ρ=1

(− ∂

∂z
)ρ−1[p(Z, t|X)D(n)(Z, t)]f (n−ρ)(Z)|∞−∞+

∫ ∞
−∞

(− ∂

∂z
)n[p(Z, t|X)D(n)(Z, t)]f(Z)dZ

 .
The series

n∑
ρ=1

(− ∂

∂z
)ρ−1[p(Z, t|X)D(n)(Z, t)]f (n−ρ)(Z)|∞−∞ = 0

for all n because, p(Z, t|X) is a probability density function in Z so it (and its higher order

derivatives) vanish at −∞ and ∞. Hence we have that

∫ ∞
−∞

f(Y )
∂p(Y, t|X)

∂t
dY =

∞∑
n=1

∫ ∞
−∞

(− ∂

∂z
)n[p(Z, t|X)D(n)(Z, t)]f(Z)dZ (D.4)

and, assuming the integrands are equal,

∂p(Z, t|X)

∂t
=
∞∑
n=1

(− ∂

∂z
)n[p(Z, t|X)D(n)(Z, t)]. (D.5)

Looking at the definition of D(n)(Z, t) carefully, you will notice that this is in fact just the

definition of the nth infinitesimal moment of the distribution p(Y, t|Z). The Fokker-Planck

equation is the restriction of this equation to the case where all moments higher than n = 2

are zero. If we re-label D(1)(Z, t) =: µ(Z, t) and D(2)(Z, t) =: σ
2(Z,t)

2 , we have the conventional

Fokker-Planck equation:

∂p(Z, t|X)

∂t
= − ∂

∂z
[µ(Z, t)p(Z, t|X)] +

∂2

∂z2
[
σ2(Z, t)

2
p(Z, t|X)]. (D.6)

In most cases, the underlying Langevin equation is such that the mean and variances of the ran-

dom variable are independent of the random variable, as is the as is the case for the stationary-

states of the Brunel and Gewaltig models.
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Description of Simulations

Simulations were performed using Neural Simulation Tool (NEST), version 2.0 [Gewaltig and

Diesmann, 2007]. Simulations were executed on the University of Cape Town High Performance

Computing Cluster. The table below describes all default settings for simulations. See 1.2 for

a description of the single neuron membrane potential dynamics. All data was generated from

networks of the formulation described here, unless otherwise stated in the text. This regime is

referred to as the “canonical network”.

Simulation Protocol

Let t0 = 0. Here we describe the simulation protocol used by describing what happens to the

network during sequential time intervals. All times are in milliseconds.

t=0 to t=200: All neurons receive input from the Poisson generator.

t=200 to t=230: Poisson Generator ceases at t=200. No spikes are recorded for 30 ms to

reduce effects of transients.

t=230 to tEND: Spike Detector records spikes from all neurons1.

Calculation of statistics

Global Firing Rate of Self-Sustained state is calculated by summing all spikes recorded

during the simulation, dividing by the total number of neurons and dividing by [SimTim−
1Note that, in nest, Spike Detectors cannot collect any spikes which occur in the last ∆t of the simulation.
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230.1]:

〈ν〉 =
Total Spike Count

N · (SimTim− 230.1)

Variance in Firing Rate of Self-Sustained State is calculated by binning all spikes into 3

ms bins and calculating mean firing rate of each bin as above. The variance in the global

rate is then the variance in the set of all 3 ms bins.

Survival Time of Self-Sustained State is calculated as tlast−230.1, where tlast is the time

of the last recorded spike.

Inter-Spike-Intervals are calculated for each neuron. If a neuron had a total of n spikes at

times ti where i = 1, 2, 3 . . . , n and t1 < t2 < t3 < . . . < tn, then it will have n − 1 ISI

values, calculated as ti − ti−1 for i = 2, . . . , n.

The average ISI is calculated as the average of all ISIs and the variance is similarly the

variance in the set of all ISIs. These values are then used to calculate the CV for each

individual simulation.
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Model Summary

Neuron Model iaf psc alpha

Incremental time step (∆t) 0.1 ms

Simulation Duration
(SimTim)

varied

Synaptic Current Isyn = J e
τ ′ · t · Exp(− t

τ ′ )

Synaptic Time Constant (τ ′) 0.5 ms

Threshold Potential (Vθ) 10 mV

Resting Membrane Potential
(VE)

0 mV

Membrane time constant (τ) 30 ms

Membrane Capacitance 1 pF

Reset Membrane Potential
(Vr)

0 mV

Duration of Recovery Period
(τrp)

2 ms

Number of Excitatory Neu-
rons (ExcPop)

10 000

Number of inhibitory neurons
(ExcPop)

2 500

Total Number of neurons
(TotPop)

12 500

Recurrent Excitatory connec-
tions into each neuron (CE)

1 000

Recurrent Inhibitory connec-
tions into each neuron (CI)

250

Delay, (D) 1.5 ms

Connection weight (J) 0.1 mV

Inhibitory gain (g) 5

Doping strength (α) 40

Doped fraction (f) 0.005− 0.02 (see text)

Poisson Generator (PosGen)

(rate: νext)

3× Vθ
τJCE

= 3.33 Hz

Spike Detector (SpkDet) All 12500 neurons sampled

Connectivity

Connection Pattern Applied to each neuron (labelled i)

RandomConvergentConnect ExcPop → i : CE × (1− f) connections, weight
J

RandomConvergentConnect ExcPop → i : CI × (1 − f) connections, weight
−gJ

RandomConvergentConnect ExcPop→ i : CE × f connections, weight αJ

RandomConvergentConnect ExcPop→ i : CI × f connections, weight −gαJ
DivergentConnect PoisGen→ i : CE connections, weight J

ConvergentConnect TotPop→ SpkDet

Table E.1: Description of Simulations. The table denotes all objects defined in the NEST
simulations and all the parameter values which do not appear in the text.
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